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A national flood mark database spanning several centuries contains valuable 

information to characterize ancient flood events. However, the network of flood mark 

sites is distinct from the network of hydrometric stations, making this information 

difficult to use. This work describes a probabilistic model jointly describing flood 

marks at sites and flood peaks at stations. The model is based on the estimation of 

Hidden Climate Indices driving both flood marks and peaks: this allows transferring 

information between the two variables despite them being measured on distinct 

networks. The model is applied to about 300 flood mark sites (1705-2015) and 200 

stations (1904-2015) in France. Results demonstrate that flood marks allow estimating 

the time-varying probability of exceeding some high discharge threshold at stations 

during the whole period 1705-2015, which largely predates the existence of stations. 

The resulting probability maps provide quantitative information on the extent and 

spatial structure of ancient floods. 

Keywords: Historical floods; Flood marks; Bayesian modeling; Space-time variability; 

Hidden Climate Indices; Mixed data 

1 Introduction 

Understanding the past variability of floods and quantitatively assessing flood hazard is 

challenged by the short length of hydrometric series. It is therefore common to complement 

local series with other temporal, spatial and causal sources of information (Merz and Blöschl 

2008). In this context, the recent development of a national flood marks database in France 

offers an opportunity to spatially and temporally expand the information provided by the 

standard hydrometric network. The aim of this work is to demonstrate how data from both 
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sources can be used together, and to assess the resulting added value for flood frequency 

analysis (FFA) and for the characterization of flood variability in the distant past. 

The interest of using historical and paleoflood information dating back several centuries for 

improving flood hazard estimation has long been recognized (e.g. Benito et al. 2004; Brázdil 

et al. 2006). Historical and paleoflood data allow studying the past variability of floods at a 

temporal scale that is out of reach for systematic data from hydrometric networks. They have 

often been used to characterize low-frequency variability (i.e. hydro-climatic oscillations, 

flood-rich/flood-poor periods) and to reconstruct spatio-temporal patterns of flood 

occurrences (e.g. Barriendos and Martin-Vide 1998 in Spain; Pichard et al. 2017 in France; 

Blöschl et al. 2020; Brönnimann et al. 2022 in Europe; Wilhelm et al. 2022 in the European 

Alps). 

Historical data are also frequently used in combination with systematic data from hydrometric 

stations to improve FFA (Stedinger and Cohn 1986). In this case, historical information is 

used to reconstruct peak discharges at the target station, or at least to assess whether historical 

floods exceeded some high threshold. Such reconstructions are affected by large uncertainties 

that need to be accounted for (Reis and Stedinger 2005; Neppel et al. 2010). When historical 

and systematic data are available at several stations, this approach can also be applied within a 

regional FFA procedure (e.g. Jin and Stedinger 1989; Gaume et al. 2010; Nguyen et al. 2014; 

Sabourin and Renard 2015). Combined historical+systematic records have also been used in 

time-varying models incorporating climate information (e.g. Machado et al. 2015; Xiong et al. 

2020). 

Databases collecting historical flood marks provide valuable long-term and spatially-

distributed information that may be used in this context. Such a database has been recently 

developed at the national scale in France. The French National Flood Marks Platform (Piotte 



et al. 2016, https://www.reperesdecrues.developpement-durable.gouv.fr) collects qualitative 

and quantitative information on high-water marks that may be used for a variety of purposes 

such as hazard assessment, flood mapping, hydraulic modeling or public education. Typical 

information includes the localization and date of the mark, the description of the site, but also 

sometimes the mark elevation, photos, and other qualitative comments. Many data correspond 

to temporary marks such as mud or debris lines that have been collected fairly recently during 

post-flood field campaigns (Koenig et al. 2016; Galiana et al. 2017). However, the database 

also includes thousands of geolocalized, perennial flood marks such as plaques or markers 

carved on walls, sometimes dating back several centuries: these are the focus of this study. 

Using these historical flood marks in combination with systematic data from hydrometric 

stations is not a straightforward task. The first difficulty is that the network of flood mark sites 

is distinct from the network of hydrometric stations. While some sites could probably be 

paired with existing stations, this cannot be done systematically since flood marks exist 

outside of the hydrometric network. Moreover, for sites that could be paired with stations, 

transforming flood marks into peak discharges is a significant undertaking that requires 

setting up hydraulic models reflecting the evolution of river topography and flow conditions 

(Benito et al. 2004): such information is highly site-specific, so that the reconstruction of peak 

discharges from flood marks cannot be automated on hundreds of sites. The approach taken in 

this paper to face these issues is to avoid reconstructing peak discharges altogether: instead, 

the flood marks database is only used to provide the date and localization of flood 

occurrences. The methodological challenge can then be expressed as follows: how to transfer 

information between two distinct networks (sites vs. stations) measuring distinct variables 

(mark occurrences vs. flood peaks)? 

In this study, this challenge is addressed by means of a recently-proposed modeling 

framework for multi-variable space-time data (Renard et al. 2021). Its principle is to uncover 



a set of hidden time series, called Hidden Climate Indices (HCI), that drive the temporal 

variability of all studied variables. The flexibility of the framework allows considering any 

type of variables (discrete or continuous), measured on distinct networks, and with varying 

data availability. Moreover, considering common HCIs as drivers of distinct variables 

provides a mechanism to transfer information between variables. 

The work described in this paper therefore aims at deriving a probabilistic HCI model for both 

flood peaks at hydrometric stations and flood marks at sites, and to use it for flood hazard 

estimation. More specifically, we aim at assessing the added value brought by flood marks 

with respect to the following objectives: 

1. FFA, i.e. the task of estimating the marginal distribution of flood peaks and the 

associated T-year events at hydrometric stations. 

2. characterizing historical floods in the distant past by estimating the probability 

that they exceeded some high threshold at hydrometric stations. 

The remainder of this paper is organized as follows. Section 2 describes the two main datasets 

used in this work, namely flood peaks at hydrometric stations and flood marks at sites. 

Section 3 describes the probabilistic models, their inference and their use to estimate flood 

probabilities. Section 4 describes the main results of this work and Section 5 discusses them 

in terms of interpretations, limitations and avenues for future work. The key conclusions are 

finally summarized in Section 6. 

2 Data 

2.1 Flood Peaks at Hydrometric Stations, 1904-2015 

Data from 207 hydrometric stations forming the French reference hydrological network 

(Giuntoli et al. 2012) are used (Figure 1a). These stations monitor near-natural catchments 



where direct human influence on floods is deemed negligible. Measurement quality and 

homogeneity is considered suitable for high flow analysis, and time series are at least 40-year 

long. For more than 90% of stations, catchment size is between 20 and 2,000 km2. 

Annual maxima are extracted at each station from the daily streamflow series (expressed in 

mm), with the hydrological year starting on the first of September (i.e. hydrological year 1998 

is the period from 1st September 1998 to 31st August 1999). The average series length is 50 

years, with the majority of series starting during the 1960’s, and very few available data 

before 1950 (Figure 1a). The oldest series starts in 1904. 

2.2 Flood Marks at Sites, 1705-2015 

Flood marks are taken from the National Flood Marks Platform. For the purpose of this work, 

we focus on perennial historical flood marks such as plaques or markers carved on walls. We 

also restrict to marks with a known localization and corresponding to river flooding (as 

opposed to coastal flooding or urban runoff, for instance). At each site, a series of flood 

occurrences is derived by making the following hypotheses: 

1. The site is considered active from its first to its last recorded flood mark (included). 

2. During the activity period, years with at least one recorded flood mark are associated with 

flood occurrences (1), while all other years are associated with non-occurrences (0). 

The first hypothesis above implies that at least two flood marks are necessary for a site to be 

included in the analysis. However, we increased this requirement to 4 flood marks to facilitate 

sensitivity analyses that will require removing the first and the last marks (see section 4.6). 

Moreover, we restrict to the period 1705-2015, as preliminary analyses suggested that 

including earlier years led to inference difficulties due to the number of active sites becoming 

too small. The resulting dataset comprises 327 sites recording 1604 flood marks as shown in 



Figure 1b. The average duration of the activity period is 96 years and the average number of 

flood marks is about 5. Note that there is no need to define a perception threshold above 

which flood marks would be recorded, as done in FFA with historical data (see introduction 

section): this threshold will rather be treated through an unknown parameter in the 

probabilistic model for flood marks (see section 3.1.4). 

The two hypotheses described above are fairly strong and probably inaccurate to some degree. 

Regarding the first hypothesis, the consideration of an activity period is necessary because it 

is clear that not all sites recorded flood events as early as 1705, and some sites stopped 

recording events at some point in time. While the definition used here is conservative in the 

sense that it assumes no information before the first mark and after the last, it is still 

disputable. The second hypothesis corresponds to assuming that there are neither false 

detection nor missed events during the activity period. While assuming that flood marks 

correspond to genuine flood events seems reasonable, assuming that the absence of flood 

mark corresponds to no flood occurrence is more disputable: events may have been missed 

during the activity period. Sensitivity analyses will be performed in section 4.6 to assess the 

influence of these hypotheses. 

3 Methods 

The methodology used here is built upon existing statistical frameworks (Datta et al. 2016; 

Banerjee 2017; Renard and Thyer 2019; Renard et al. 2021). All models used as part of this 

study are described in the following sections, but technical or implementation aspects are not 

exhaustively detailed as they can be found in the aforementioned references or in the 

Appendix sections A1 and A2. 



3.1 Models 

Four models of increasing complexity are used and compared in this work. The first three 

models focus on flood peaks at hydrometric stations over the period 1904-2015, while the 

fourth model jointly describes flood peaks at stations and flood marks at sites. 

3.1.1 M1: Local GEV Model for Peaks 

Let 𝑄(𝑠, 𝑡) denote annual maxima at station 𝑠 and time 𝑡 and 𝐺𝐸𝑉(𝜃1, 𝜃2, 𝜃3) denote the 

Generalized Extreme Value distribution with parameters 𝜃1 (location), 𝜃2 (scale) and 𝜃3 

(shape). The first model considered in this paper is a purely local GEV model with no prior 

information: 

𝑄(𝑠, 𝑡) ∼ 𝐺𝐸𝑉 (𝑒𝜇(𝑠), 𝑒𝜇(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠)) (1) 

An exponential function is used to ensure that the location parameter 𝜃1 = 𝑒
𝜇(𝑠) is positive. 

The scale parameter is not estimated directly: instead, it is computed as the product of the 

location parameter and a coefficient of variation (CV) 𝑒𝛾(𝑠). The motivation behind this 

reparameterization is that the CV parameter is expected to vary more smoothly in space than 

the scale parameter (Prosdocimi and Kjeldsen 2021), which may be beneficial with the spatial 

models introduced next. 

3.1.2 M2: Spatial GEV Model for Peaks 

The second model is a spatialized version of the first one: the location, CV and shape 

parameters are assumed to be realizations from a spatial process. This allows reflecting the 

spatial consistency in these parameters that the data may suggest, i.e. the fact that nearby sites 

may tend to have similar parameter values. Spatial Gaussian processes are typically used for 

this purpose (e.g. Diggle et al. 1998; Cooley et al. 2007). In this work we used a particular 



class of processes called Nearest-Neighbors Gaussian Processes (NNGP, Datta et al. 2016; 

Banerjee 2017). A NNGP can essentially be interpreted as a standard spatial Gaussian process 

modified for computational efficiency. Formally, model M2 can be written as follows: 

{
 
 

 
 𝑄(𝑠, 𝑡) ∼ 𝐺𝐸𝑉 (𝑒

𝜇(𝑠), 𝑒𝜇(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠))

𝛍 ∼ 𝑁𝑁𝐺𝑃(𝐦𝜇, 𝐕𝜇)

𝛄 ∼ 𝑁𝑁𝐺𝑃(𝐦𝛾, 𝐕𝛾)

𝛏 ∼ 𝑁𝑁𝐺𝑃(𝐦𝜉 , 𝐕𝜉)

 (2) 

where 𝛍 = (𝜇(𝑠))
𝑠=1…𝑆

 with 𝑆 the number of stations, and similarly for other parameters. For 

each parameter, the NNGP is parameterized by a mean vector 𝐦 = (𝑚1, … ,𝑚𝑆) and a 

covariance matrix 𝐕 = (𝑉𝑖,𝑗)𝑖,𝑗=1…𝑆 defined as follows: 

{
𝑚𝑖 = 𝛼, ∀𝑖 = 1…𝑆

𝑉𝑖,𝑗 = 𝜂0
2𝑒𝑥𝑝(−𝑑𝑖,𝑗/𝜂1) ∀𝑖, 𝑗 = 1…𝑆

 (3) 

where 𝑑𝑖,𝑗 is the distance between stations 𝑖 and 𝑗. Hyperparameters 𝛼 (constant-mean), 𝜂0 

(sill) and 𝜂1 (range) are unknown and need to be inferred. The range parameter 𝜂1 controls 

spatial smoothness: large range values correspond to smooth spatial fields, while spatial 

independence can be obtained as a limiting case by letting the range tend to zero. The prior 

distributions used for the hyperparameters are given in Table 1. 

The use of NNGPs is motivated by computational aspects: NNGPs avoid computations using 

the full covariance matrix 𝐕 and replace them by computations using many smaller sub-

matrices corresponding to a small number of neighboring stations. NNGP’s thus remain 

practical when a large number of stations are used. We refer to the aforementioned references 

and to section A1 for technical details. 



3.1.3 M3: HCI Model for Peaks 

The third model builds on the previous spatialized GEV model, but now assumes that the 

location parameter is also varying in time: 

{
 
 
 
 
 

 
 
 
 
 
𝑄(𝑠, 𝑡) ∼ 𝐺𝐸𝑉 (𝑒𝜇0(𝑠) × (1 +∑𝜇𝑘

𝐾

𝑘=1

(𝑠)𝜏𝑘(𝑡)) , 𝑒
𝜇0(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠))

𝛍0 ∼ 𝑁𝑁𝐺𝑃(𝐦𝜇0 , 𝐕𝜇0)

𝛄 ∼ 𝑁𝑁𝐺𝑃(𝐦𝛾 , 𝐕𝛾)

𝛏 ∼ 𝑁𝑁𝐺𝑃(𝐦𝜉 , 𝐕𝜉)

𝛍𝑘 ∼ 𝑁𝑁𝐺𝑃(𝐦𝜇𝑘 , 𝐕𝜇𝑘) ∀𝑘 = 1…𝐾

𝛕𝑘 ∼
𝑖𝑖𝑑
𝒩(0,1) ∀𝑘 = 1…𝐾

 (4) 

In eq. (4), time variability is induced by a set of 𝐾 time series 𝜏𝑘(𝑡). This is similar to the 

covariate modeling approach widely used in the literature (e.g. Maraun et al. 2011; 

Prosdocimi et al. 2015), with the major difference that these covariates are here assumed 

unknown and are hence treated as latent variables that need to be inferred. The time series 

𝜏𝑘(𝑡) are termed Hidden Climate Indices (HCI) because, apart from their hidden nature, they 

are similar to climate indices such as the Southern Oscillation Index (e.g. Sun et al. 2014) or 

the North Atlantic Oscillation index (e.g. Whan and Zwiers 2017) frequently used in this 

context. We refer to the paper by Renard et al. (2021) for a thorough description of the HCI 

modeling framework. 

As in eq. (2), NNGPs are used to model the spatial variability of CV and shape parameters 𝛾 

and 𝜉 and of the intercept term 𝜇0. Parameters 𝜇1, … , 𝜇𝐾 represent the effect of each HCI and 

are also assumed to vary in space following a NNGP. Note that no log transformation is used 

here because HCI effects can be positive or negative. Finally, each HCI time series is assumed 

to be composed of iid realizations from a standard normal distribution. 



3.1.4 M4: HCI Model for Peaks and Marks 

Let 𝑂(𝑟, 𝑡) denote the occurrence of a flood mark at time 𝑡 and site 𝑟 (note the distinction 

with the index 𝑠 used for stations). Moreover, let ℬ(𝜃) denote the Bernoulli distribution with 

probability of occurrence 𝜃. The fourth model uses the HCI model of eq. (4) to describe flood 

peaks at stations, and complements it with the following HCI model for flood marks at sites: 

{
  
 

  
 
𝑂(𝑟, 𝑡) ∼ ℬ(𝑔(𝜆0(𝑟) +∑𝜆𝑘

𝐾

𝑘=1

(𝑟)𝜏𝑘(𝑡)))

𝛌0 ∼
𝑖𝑖𝑑
𝒩(𝑚𝜆0 , 𝑣𝜆0)

𝛌𝑘 ∼ 𝑁𝑁𝐺𝑃(𝐦𝜆𝑘 , 𝐕𝜆𝑘) ∀𝑘 = 1…𝐾

 (5) 

where 𝑔(𝑥) = 1/(1 + 𝑒−𝑥) is the standard logistic function, used to ensure the parameter of 

the Bernoulli distribution remains between 0 and 1. 

It is stressed that this fourth model uses both equations (4) and (5) and is hence a joint model 

for flood peaks and flood marks. Importantly, the HCIs 𝜏𝑘(𝑡) used in equations (4) and (5) are 

the same, corresponding to assuming that the temporal variability of food peaks and marks is 

driven by a set of common HCIs. This assumption of common HCIs is of prime importance in 

the context of this paper since it enables the transfer of information between flood marks and 

flood peaks, as will be described in section 3.3 (see also Renard et al. 2021 for a general 

discussion). 

As in eq. (4), NNGPs are used to model the spatial variability of HCI effects 𝜆𝑘(𝑟). The 

intercept term 𝜆0(𝑟) controls the marginal probability of having a flood mark at site 𝑟. This 

probability strongly depends on the local hydraulic configuration of the site, and there is little 

reason to expect this parameter to vary smoothly in space. We therefore specified an 

independent Gaussian process for 𝜆0(𝑟). 



3.2 Inference 

For all models described previously, inference is performed by deriving the posterior 

distribution and exploring it with a Markov Chain Monte Carlo (MCMC) sampler. Posterior 

distributions are given in the appendix section A2. They are derived under the assumption that 

data are independent in both space and time, conditionally on the inferred parameter. Note 

that for HCI models M3 and M4, this is not equivalent to assuming (unconditional) space-

time independence: indeed, the use of HCIs with spatially structured effects can introduce 

dependence, and can even be considered as an indirect way to model it (see Renard et al. 2021 

for practical illustrations). 

The MCMC sampler used here is an adaptive block Metropolis algorithm, carefully 

implemented to avoid unnecessary computations and minimize computation time (Renard and 

Thyer 2019). Models M1-M2 correspond to standard hierarchical models in a spatial context 

and the MCMC exploration of their posterior distributions poses no particular difficulty. HCI 

models M3-M4 are more challenging because the estimation of both spatial and temporal 

latent variables leads to non-identifiability issues that need to be addressed to make inference 

feasible. A two-part solution is used here (see Renard and Thyer 2019 for technical details). 

First, each HCI time series (𝜏𝑘(𝑡))𝑡=1…𝑇 is forced to have mean zero and variance one: this 

implies that only 𝑇 − 2 values need to be inferred, the remaining two being derived from the 

two constraints. Second, a stepwise inference is performed, with the model being estimated 

one HCI component at a time. 

Note that the models used in this paper require estimating a large number of parameters, but 

they also use a large volume of data. Models M1 and M2 require estimating 621 and 630 

parameters, respectively, but using 10,452 data points, leading to a ratio of 16.8 and 16.6 data 

point per inferred parameter. Model M3 uses the same data but introduces additional 



complexity to describe the HCI time series and its spatial effect: for one component (i.e. at 

one step of the stepwise inference), this leads to 950 inferred parameters, i.e. 11.0 data point 

per parameter. Finally model M4 adds even more parameters for the Bernoulli distribution of 

equation (5), but it also uses additional flood mark occurrence data: for one component, this 

leads to 1,808 parameters for 41,310 data points, i.e. 22.8 data point per parameter. While 

counting inferred parameters vs. data points has limitations and is by no means sufficient to 

discard potential inference difficulties, it at least shows that the models used in this paper are 

not inherently over-parameterized. We also refer to the synthetic case studies of (Renard and 

Thyer 2019) for more detailed analyses on this topic. 

MCMC sampling is performed on a high-performance computing cluster allowing to run 

many chains in parallel. For each of the four models, 10 chains are run in parallel during 

500,000 iterations, with a computing time of approximately 1 day for models M3-M4 (much 

less for simpler models M1-M2). This high number of iterations was found to be necessary 

because of a relatively slow mixing for some of the inferred parameters, typically HCIs 𝜏𝑘(𝑡) 

associated with early years having poor data coverage. To avoid storage issues, only one 

iteration every 500 is saved, so that a total of 10,000 iterations is available across the 10 

chains. The first 20% of each chain is further discarded as a burn-in period. MCMC 

convergence is assessed by monitoring the Gelman-Rubin criterion (Gelman and Rubin 1992) 

and visualizing MCMC traces. 

3.3 Estimating Flood Probabilities 

The HCI models M3-M4 allow computing time-varying flood probabilities at hydrometric 

stations. For a given station 𝑠 and time step 𝑡, let 𝚯(𝑠) = (𝜇0(𝑠), 𝜇1(𝑠),… , 𝜇𝐾(𝑠), 𝛾(𝑠), 𝜉(𝑠)) 

denote the values of all spatially-varying parameters at this station, and 𝛕(𝑡) =

(𝜏1(𝑡), … , 𝜏𝐾(𝑡)) denote the values of HCIs at this time step. The probability of not exceeding 



a particular streamflow value 𝑞 can be computed from the following GEV cumulative 

distribution function (cdf): 

𝑃𝑟(𝑄(𝑠, 𝑡) ≤ 𝑞|𝚯(𝑠), 𝛕(𝑡))

= 𝐹𝐺𝐸𝑉 (𝑞; 𝑒
𝜇0(𝑠) × (1 +∑𝜇𝑘

𝐾

𝑘=1

(𝑠)𝜏𝑘(𝑡)) , 𝑒
𝜇0(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠)) 

(6) 

This equation can be applied to any station and time step belonging to the estimation dataset. 

For model M3 using flood peaks data only, this means that flood probabilities can be 

estimated at all stations over the period 1904-2015. More interestingly, since model M4 also 

uses flood marks available over a much longer period, it allows computing flood probabilities 

at all stations over the period 1705-2015. As explained in section 3.1.4, this is made possible 

by the assumption that a common set of HCIs is driving the time variability of both flood 

peaks and flood marks: in a nutshell, ancient flood marks allow identifying the values taken 

by HCIs during the earlier years of the period, and this information can be transferred to 

stations by means of eq. (6), even before the availability of any flood peak data. 

A limitation of eq. (6) is that it is conditional on the parameters 𝚯(𝑠) and 𝛕(𝑡). In practice, 

point-estimates for these parameters can be derived from the MCMC samples (typically, the 

posterior mode or median) and used in eq. (6). However, this approach ignores estimation 

uncertainty which may be large, as will be shown in the case study. In a Bayesian context, this 

is typically addressed by using the predictive distribution which integrates out parameter 

uncertainty. Denoting by 𝐃 the estimation dataset (flood peaks for M3 and peaks+marks for 

M4), this can be formalized as follows: 



𝑃𝑟(𝑄(𝑠, 𝑡) ≤ 𝑞|𝐃)

= ∫ 𝑃𝑟(𝑄(𝑠, 𝑡) ≤ 𝑞|𝚯(𝑠), 𝛕(𝑡))⏟                
eq. (6)

𝑝(𝚯(𝑠), 𝛕(𝑡)|𝐃)⏟          
posterior pdf

𝑑𝚯(𝑠)𝑑𝛕(𝑡) 
(7) 

In practice, the integration in eq. (7) is analytically intractable but can readily be estimated 

from the MCMC samples. Indeed, eq. (7) can be interpreted as the posterior expectation of eq. 

(6), and can hence be approximated by computing eq. (6) for each MCMC sample and 

averaging the results. 

While models M3-M4 are time-varying in nature, they are also able to provide a time-

invariant marginal distribution by integrating out the HCIs with respect to their 

hyperdistributions as shown below. This marginal distribution may be requested by typical 

FFA applications such as engineering design (as further discussed in section 5.1), but in the 

context of this paper it also useful to compare all four models M1-M4. 

𝑃𝑟(𝑄(𝑠) ≤ 𝑞|𝚯(𝑠)) = ∫ 𝑃𝑟(𝑄(𝑠) ≤ 𝑞|𝚯(𝑠), 𝛕)⏟              
eq. (6)

∏𝑓𝒩

𝐾

𝑘=1

(𝜏𝑘; 0,1)
⏟          

hyperdistributions

𝑑𝛕 
(8) 

As previously, this integral is intractable but can estimated as described above, with HCI 

values 𝛕 being sampled from their 𝒩(0,1) hyperdistributions. Finally, a predictive version of 

this marginal distribution can be obtained by further integrating out parameters 𝚯(𝑠): 

𝑃𝑟(𝑄(𝑠) ≤ 𝑞|𝐃)

= ∫ 𝑃𝑟(𝑄(𝑠) ≤ 𝑞|𝚯(𝑠), 𝛕)⏟              
eq. (6)

𝑝(𝚯(𝑠)|𝐃)⏟      
posterior pdf

∏𝑓𝒩

𝐾

𝑘=1

(𝜏𝑘; 0,1)
⏟          

hyperdistributions

𝑑𝚯(𝑠)𝑑𝛕 
(9) 



4 Results 

The four models of section 3.1 are applied to the datasets of section 2, and the results 

description is organized as follows. Estimated parameters are first compared between the four 

models in order to understand how the models’ hypotheses affect estimation. For models M3-

M4, estimated HCIs and their effects are also described and interpreted. The model 

comparison is then extended to the marginal distributions and associated flood quantiles. 

Flood probabilities at all stations are then estimated over the period 1705-2015 thanks to the 

joint modeling of flood peaks and flood marks by M4. The reliability of these ancient 

estimates is evaluated by means of a cross-validation exercise. Finally, a sensitivity analysis is 

carried out to assess how deviations from some key assumptions made in this work affect the 

results. 

4.1 Estimated Parameters 

The top row of Figure 2 compares GEV parameters at all stations. For the location parameter 

𝑒𝜇 (M1-M2) or its intercept 𝑒𝜇0 (M3-M4), differences between models are barely noticeable, 

while stronger differences are found for the CV and shape parameters. Focusing on the 

comparison between M1 and M2 first, M2 estimates of CV and shape appear to be smoothed 

versions of M1 estimates, which indicates that these parameters show some spatial 

consistency that can be taken into account in M2 through the spatial models of equation (2). 

On the other hand, the strong similarity between M1 and M2 location estimates indicates that 

spatial consistency is weak for this parameter. This result illustrates that the use of a spatial 

model in equation (2) does not necessarily lead to spatially smooth estimates - it does only if 

the data suggest it should. Note that the smoothing effect is particularly strong for the shape 

parameter, which is highly variable when estimated locally (M1), reflecting its well-known 

sensitivity to sampling uncertainty. Models M3-M4 also show systematic differences in CV 



and shape estimates compared with M1-M2. In particular, CVs are on average 50% higher 

with M1-M2 than with M3-M4. This can be attributed to the fact that M3-M4 are HCI 

models: part of the temporal variability that CV and shape parameters represent are accounted 

for by the temporal variability of HCIs. This is akin to covariates explaining part of the data 

variability in regression. 

While estimated values of CV and shape parameters highlight systematic differences between 

M1-M2 and M3-M4, their uncertainties separate M1 from the three other models (bottom row 

of Figure 2): M1 leads to the highest uncertainties, while M2-M3-M4 are very similar in this 

respect. This result suggests that much of the uncertainty reduction is achieved thanks to the 

explicit modeling of spatial variability in models M2-M3-M4. By contrast, the use of HCIs 

(M3-M4) or the inclusion of flood marks (M4) does not make any noticeable difference in 

terms of GEV parameter uncertainty. 

4.2 Estimated HCIs and their effects 

In addition to the GEV parameters discussed above, models M3-M4 also estimate HCI time 

series 𝜏𝑘(𝑡) and their effects at stations (𝜇𝑘(𝑠), eq. (4)) and, for M4, sites (𝜆𝑘(𝑟), eq. (5)). 

Figure 3 shows the M4 estimates for the first three HCIs. A similar figure is provided for 

HCIs 4 to 6 (see Supplementary material, Figure S1). The total number of 6 HCIs was 

selected because the magnitude of HCI effects drops at the seventh HCI (not shown - see 

Renard et al. 2021 for additional discussion on how to select the number of components). 

For the first component shown in Figure 3, effects at both stations and sites are positive 

everywhere, with a northwest-southeast decreasing gradient. This means that high values of 

the first HCI 𝜏1(𝑡) are associated with higher-than-usual flood peaks and more-frequent-than-

usual flood marks, especially in the northwestern half of the country. The HCI time series 

itself is characterized by a highly variable uncertainty (pink band). During the recent period 



1951-2015, for which many stations and sites provide peaks and marks data, uncertainty is 

very small. Interestingly, the HCI estimated from model M3 (blue band), which uses peaks 

data only, is very similar to the M4 one. This indicates that the estimation of the HCI is 

mostly driven by the peaks data. For the period 1904-1950, the number of stations providing 

peaks data decreases, and the HCI uncertainty hence increases. However, this uncertainty 

increase is much weaker for M4 than for M3, which illustrates the additional information 

brought by flood marks compared to flood peaks alone. For the pre-1904 period, only flood 

marks are available and the HCI is hence only available for M4. Since the number of active 

sites decreases as one moves back in time, the HCI uncertainty increases until reaching a high 

level before the 19th century. Such a high level of uncertainty cannot reasonably be ignored in 

further computations, which justifies the use of predictive distributions as described in section 

3.3. 

Similar comments can be made for the second and third HCIs in Figure 3 in terms of 

uncertainty. The effects of HCI2 are much more localized than for HCI1, with high positive 

values being mostly restricted to the northwest and northeast tips of the country (Brittany and 

Lorraine regions). HCI3 has both positive effects in the southern Mediterranean region and 

negative effects in the northeast. 

4.3 Marginal Distributions 

Figure 4 compares the marginal distributions (represented as quantile curves) estimated at 

three stations. For models M1-M2, the GEV distributions of eq. (1)-(2) are used. For models 

M3-M4, marginal distributions are derived by integrating out HCIs with respect to their 

hyperdistributions, as described in section 3.3 (eq. (8)). For these three particular stations, 

there is no discernible difference between M3 and M4. This suggests that the inclusion of 

flood marks data does not change the estimated marginal distribution: this may appear 



surprising and will be further discussed in section 5.1. Moderate differences appear with 

model M2, but overall M2-M3-M4 quantile curves remain compatible with each other and 

have comparable uncertainties. This similarity in terms of uncertainty between the three 

models was already noted in section 4.1 and can be explained by the fact that they share the 

same spatial models for GEV parameters. Finally, model M1 leads to strong differences with 

other models, notably a much higher uncertainty for the first two stations. 

The comparison above is extended to all 207 stations in Figure 5 which compares 100-year 

flood estimates and their uncertainties. Overall, the variability of Q100 across stations is very 

similar with the four models. However, larger differences appear when expressed in terms of 

deviation from a reference model (taken as M2). This is particularly the case with local model 

M1, with Q100 being sometimes more than twice larger than the reference. By contrast, Q100 

from models M3-M4 remain similar to M2, with deviations being mostly within ±20% 

(median:-6%). This is a remarkable result given that marginal distributions were obtained in 

very different ways: M2 directly models the GEV marginal distribution, while M3-M4 

integrate out HCIs from conditional GEV distributions, resulting in a marginal distribution 

that does not even belong to the GEV family. Strong differences between methods also appear 

in terms of Q100 uncertainties: they are mostly in the range 10-15% with M2-M3-M4, but 

they are on average 2.5 times higher with M1, mostly in the range 15-60%. This is a direct 

consequence of the larger estimation uncertainty affecting M1 parameters, and in particular 

the shape parameter, as discussed in previous section 4.1. 

4.4 Estimated Flood Probabilities, 1705-2015 

As explained in section 3.3, model M4 allows estimating the time-varying distribution of 

flood peaks at all stations over the period 1705-2015, by transferring the information provided 

by flood marks at sites. Figure 6a illustrates this for a station located in Brittany (northwest). 



The predictive distribution (eq. (7)) strongly varies in time, so that for some years the 

probability of exceeding the 10-year flood is close to zero or one. This corresponds to sharp 

estimations and denotes an efficient transfer of information from the marks dataset to peaks at 

this station. By contrast, estimations made at the station shown in Figure 6b have low 

sharpness: the predictive distribution does not vary much in time, and the probability of 

exceeding the 10-year flood always remains close to 0.1. These two examples suggest that 

sharpness can be quantified by computing the range of estimated probabilities over the 1705-

2015 period. The map in Figure 6c indicates that sharpness is particularly high in Brittany 

(northwest) while it is very low around the Mediterranean (southeast). This sharpness gradient 

reflects the fact that HCI effects at stations tend to be higher in the northwest than in the 

southeast (Figure 3). Possible reasons behind this gradient are discussed in section 5.1. 

In addition to the time series of flood probabilities at one particular station, it is of interest to 

derive the probability map computed for one particular year: this provides information on the 

spatial structure of floods. Figure 7 shows examples of such probability maps for a few 

selected years. The complete movie for all years 1705-2015 is provided in the supplementary 

material (Video S1) and the underlying dataset is released in an online repository (see “data 

availability” section). 

For hydrological year 1710 (September 1710 to August 1711), only 14 sites are active but 8 of 

them record a flood mark, all associated with the same event in February 1711. 5 marks are 

located in the downstream part of the Loire catchment (northwest), while 3 are located in the 

quite distant Rhône catchment (center-east): this may be the sign of a large-scale event that 

affected an important part of the country. The associated probability map indeed shows high 

probabilities of exceeding a 10-year event in the northern half of the country, and especially 

in Brittany (northwest). These high probabilities result from the high values taken by the first 

two HCIs for this year, and the fact that they have large effects in these regions (Figure 3). 



Hydrological years 1855 and 1866 are both characterized by a large number of marks, mostly 

located along two large rivers: the Loire River (approximately flowing from East to West in 

the northern half of France) and the Rhône River (flowing North-South in the Southeast). By 

contrast most stations are located on smaller upstream tributaries, which explains why 

probability patterns and flood marks patterns are quite different. Comparing maps for 1855 

and 1866 yields interesting interpretations. For 1866, all marks relate to the same event in 

September-October 1866, and they are mostly located in the Loire river catchment, with a few 

additional marks in the Southwest. For 1855, almost all marks relate to the same event in 

May-June 1856. As for 1866, many are located along the Loire River, but unlike 1866, many 

marks are also found along the Rhône River (Southeast). As a result, the area with high flood 

probability is much more widespread in 1855 than in 1866. As for 1710, the presence of flood 

marks in both the Loire and the Rhône catchments hints toward a generalized event that 

affected a large part of the country. 

Marks for hydrological year 1874 are related to the event of June 1875 and are located in 

southwest France, mostly in the Garonne catchment. This example is interesting because few 

stations are located in the immediate vicinity of flood mark sites. Despite this, an area with 

high flood probability is identified in the upstream Pyrenees Mountain range, despite the lack 

of flood marks in this area. This indicates that the model was able to identify the covariability 

between flood peaks at upstream stations and flood marks at downstream sites, and to use it to 

transfer information spatially. 

Finally, hydrological years 1887 and 1890 illustrate cases where no high-probability area is 

detected in the country. While this seems to be a sensible estimation for 1887 given the 

absence of any flood mark, this is more questionable for 1890. Indeed, several marks are 

recorded for September 1890, which constitutes a reference flood in the western 

Mediterranean area, even one of the largest known flood in some catchments (Naulet et al. 



2005). However, the model fails to associate these flood marks with a high flood probability 

at stations. More generally, flood probabilities in the Mediterranean area show little variation 

in time and remain close to 0.1 for all years: this is a consequence of the low sharpness found 

in this area (Figure 6c), whose possible causes are further discussed in section 5.1. 

4.5 Are ancient flood probabilities reliable? 

Flood probabilities during the 18th and 19th centuries rely on a restricted number of flood 

mark sites: for instance, only 14 sites were active in 1710. In order to assess the reliability of 

these estimates, a cross-validation exercise is set up by applying Model M4 on reduced 

datasets mimicking the information that was available during ancient flood events. Dataset V1 

is derived by removing all flood peaks data during the decade 1981-1990, leaving 138 active 

sites available to estimate flood probabilities during this decade. This is comparable with the 

information that was available for the flood of hydrological year 1855 (141 sites, 0 stations). 

Dataset V2 is made more challenging by only retaining, among the 138 sites above, the 10 

that started during the 18th century. This is similar to the situation in 1710 (14 sites, 0 

stations). 

Figure 8 compares the estimates obtained with reduced datasets V1 and V2 against the ones 

obtained with the full dataset V0. Figure 8a shows that during the validation period 1981-

1990, the removal of all station data (V1 and V2) leads to large uncertainties for estimated 

HCIs. V2-estimated HCIs are more uncertain than V1 ones due to the further removal of 

many flood mark sites. V0 estimates, which use the station data of 1981-1990, are much less 

uncertain. While different, the HCIs estimated with the three datasets remain compatible in 

the sense that the V0 HCIs are mostly included in the V1/V2 uncertainty bands. The three 

estimates are very similar before and after the validation period 1981-1990. 

Figure 8b illustrates how the differences discussed above translate in terms of probability 



maps. For hydrological year 1982, high flood probabilities are estimated in northern France 

with all three datasets, driven by the large estimated value of HCI 𝜏1. Station data confirm 

that many floods occurred (black dots in Figure 8b). Importantly, these data were included in 

V0 but not in V1 and V2 datasets, hence providing a validation of the V1/V2 probability maps 

estimated using flood marks only. Hydrological year 1986 corresponds to a case where low 

flood probabilities are estimated with the three datasets, and indeed very few events occurred. 

For hydrological year 1987, the three probability maps differ more markedly: the V0 map 

indicates an area of high flood probability in the northwest that V1 and V2 maps fail to detect. 

This is because the floods that indeed occurred were probably not large enough to materialize 

as flood marks, which is the only source of information available in V1/V2 during the 

validation period. 

The reliability of estimated flood probabilities can be evaluated more formally and for all 

validation years by means of the reliability diagram (Laio and Tamea 2007). This diagram is 

based on probability-transformed values 𝐹𝑠,𝑡(𝑞𝑠,𝑡), where 𝑞𝑠,𝑡 is the observed peak flow at site 

𝑠 and year 𝑡, and 𝐹𝑠,𝑡 is the cdf of the corresponding predictive distribution (equation (7)). 

These probability-transformed values should be uniformly distributed between 0 and 1 if the 

predictive distribution is reliable, which is assessed in Figure 8c for each year of the decade 

1981-1990. For most years the V1/V2 reliability curves remain close to the V0 curve and 

close to the diagonal, indicating high reliability. A slight loss of reliability is observed for a 

few years including year 1987, which is shown in Figure 8b and discussed in the previous 

paragraph. Such a slight loss of reliability is expected as V1/V2 estimates are evaluated in a 

validation context, while evaluation data 𝑞𝑠,𝑡 are included in V0. Overall, the cross-validation 

exercise carried out in this section indicates that estimating probability maps based on a 

restricted number of flood mark sites can deliver an acceptably reliable information on ancient 

flood events. 



4.6 Sensitivity Analyses 

As explained in section 2.2, the interpretation of the flood marks dataset in term of flood 

occurrence/non-occurrence relies on two strong hypotheses: (i) at each site, the activity period 

spans from the first to the last mark; (ii) the absence of flood mark is interpreted as ’no flood’. 

In order to assess the sensitivity of the results to departures from these hypotheses, three 

synthetic datasets are created by altering the original dataset as follows: 

 D1: At each site, the first and last occurrences are removed. This implies that the 

activity period starts and ends with a generally long series of non-occurrences, instead of 

starting and ending with an occurrence. 

 D2: Years with no flood marks are randomly associated with a flood occurrence with 

probability 0.1. This mimics a 10% miss rate affecting the original dataset. 

 D3: same alteration as D2 but only applied to the period 1800-1825. This introduces a 

non-homogeneity in the flood detection process that affects all sites. 

Sensitivity is assessed by monitoring the first HCI 𝜏1(𝑡) and its effects at sites (𝜆0(𝑟), 𝜆1(𝑟)) 

and stations (𝜇0(𝑠), 𝜇1(𝑠)). The first row of Figure 9 indicates that HCI estimation is not 

sensitive to the definition of the activity period (D1 is barely distinguishable from the 

reference). Likewise, it is weakly sensitive to a constant miss rate: the D2 interval remains 

very similar to the reference, despite being somewhat noisier. However, sensitivity is higher 

with a non-constant miss rate: the D3 interval clearly departs from the reference during 1800-

1825, while it remains very similar outside of this period. Overall, these results suggest that 

the existence of missed events is not problematic as long as the associated recording process 

remains homogeneous. Conversely, non-homogenities or trends in the miss rate may be 

picked up by the estimated HCIs and be wrongly interpreted as a hydroclimatic signal. 



The second row of Figure 9 indicates that spatial parameters related to sites are highly 

sensitive to departures from the hypotheses. Parameter 𝜆0 controls the marginal flood mark 

probability and is hence directly related to the number of flood marks. Consequently, it is 

slightly lower than the reference with D1 due to the systematic removal of the first and last 

marks. After logistic transformation (see eq. (5)), 𝜆0 values correspond to flood mark 

probabilities around 1% (D1) vs. 3% (reference). At the opposite, 𝜆0 values are much higher 

than the reference with D2 (corresponding to probabilities around 13%), due to the addition of 

many flood marks. 𝜆0 values are only slightly higher with D3 because additional flood marks 

are only added during the 1800-1825 period. Parameters 𝜆1 control the effect of the first HCI 

on the flood mark probability and are very similar to the reference with datasets D1 and D3. 

However, effects are much smaller than the reference with dataset D2, although the pattern 

remains similar. This can be explained by the fact that the additional flood marks of D2 have 

been added randomly and are hence not controlled by the HCI, which weakens its apparent 

effect. 

Finally, the last row of Figure 9 indicates that spatial parameters related to stations (𝜇0 and 

𝜇1) are virtually insensitive to departures from the hypotheses. This is an important result in 

the context of this paper because estimations made at stations such as the marginal 

distributions of Figure 4 or the flood probabilities of Figure 6 and Figure 7 only depend on 

these parameters and the HCIs (see section 3.3). Conversely, the site-specific parameters 𝜆0 

and 𝜆1 play no role in these estimations, so that their high sensitivity is not problematic. 

Consequently, the sensitivity analysis carried out in this section indicates that the estimations 

made at stations are not sensitive to the definition of the activity period at sites or to the 

existence of a non-zero but constant miss rate. A non-constant miss rate is more problematic 

as it will be picked up by the estimated HCIs and may hence affect time-varying flood 

probabilities (but not marginal distributions). 



5 Discussion 

5.1 Interest of jointly modeling flood peaks and flood marks 

Compared with usual approaches that require transforming historical information into flood 

discharge at hydrometric stations, the model used in this paper preserves the original 

localization of flood marks and their original nature as time series of occurrence/non-

occurrences. The results presented in the previous sections indicate that this simplified 

approach is sufficient to transfer information on ancient flood events from sites to stations and 

to reconstruct the associated probability maps. These maps provide information on the 

intensity that historical floods may have reached at hydrometric stations, well before these 

stations even existed. They also provide valuable information on the spatial structure of 

historical floods, which may quantitatively complement the spatial structure suggested by 

more detailed but event-specific historical analyses of various sources. However, the interest 

of these maps appears to be limited in Mediterranean regions (southeast) due to a low 

sharpness. This is likely due to the combination of two factors. First, Mediterranean flood 

events are highly localized and may be intrinsically less amenable to prediction from flood 

marks than large-scale oceanic events. Second, the density of flood marks is rather low in the 

southeast, which further affects predictability but may be remedied by improving data 

collection. 

While flood marks play a pivotal role in the characterization of ancient flood events, results 

suggest that they do not induce any noticeable change in the estimation of marginal 

distributions at stations. At first sight this is a disappointing result, since a key motivation for 

including historical information in FFA is to improve the estimation of this distribution. It is 

also a surprising one given that previous research demonstrated the usefulness of historical 

data (e.g., Payrastre et al. 2011 amongst many others). We stress, however, that this result is 



not in contradiction with existing literature since it only holds within the context of the 

specific model used in this work. More precisely, the lack of influence of flood marks is a 

consequence of keeping the sites network and the hydrometric stations network separated, 

with no attempt at pairing sites and stations. Indeed, under this setup, flood marks can only 

influence the location parameter of the GEV distribution in an indirect way, through the 

common HCIs in eq. (4)-(5). However, flood marks have no connection with the scale and 

shape GEV parameters, which are the most difficult to estimate. By contrast, if sites and 

stations were paired, it would be possible to express the probability of recording a flood mark 

in eq. (5) as a function of the GEV parameters at the paired station. Flood marks would 

therefore have a more direct influence on the estimation of all three GEV parameters. 

However, pairing hundreds of sites and stations is not obvious as explained in the 

introduction, and since flood marks may occur outside of the hydrometric network, many sites 

would still be left ‘unpaired’. 

Finally, the case study delivered an additional interesting result in terms of FFA: the 

distribution obtained by ‘integrating out’ conditional, time-varying GEV distributions (models 

M3-M4) is similar to the one obtained by directly modeling a marginal, time-invariant GEV 

distribution (model M2). This finding was not obvious beforehand considering the quite 

different assumptions underlying the two approaches and their distinct parameterizations and 

degrees of freedom. This similarity indicates that modeling conditional distributions may be 

of interest not only for the purpose of making time-varying estimations, but also for deriving 

the marginal distribution used in FFA, or alternatively to design structures based on their 

reliability over a given lifetime as suggested by Read and Vogel (2015). The pros and cons of 

each approach and their link with related methods such as the derived distribution approach 

(e.g., Michele and Salvadori 2002) need to be further studied in future work. 



5.2 Limitations and future developments 

The analyses performed in this work rely on a few strong hypotheses regarding how flood 

marks can be interpreted as flood occurrences, and more critically, their absence as flood non-

occurrences. The sensitivity analysis of section 4.6 is reassuring since it indicates that 

estimations made at hydrometric stations are quite robust to departures from these hypotheses, 

despite the fact that site-specific estimates are not. This constitutes an advantage of keeping 

the two networks separated: if sites and stations were paired, estimations made at a given 

station would likely be more sensitive to misinterpretations of the mark recording process at 

the associated site. The sensitivity analysis suggests that the most problematic situation would 

be a strong inhomogeneity in the flood detection process affecting a large part of the country - 

for instance, decades during which flood events failed to materialize into flood marks for 

some historical reasons. Modifying the model to account for such inhomogeneity is feasible 

but would require making specific historical hypotheses on homogeneity periods and the 

associated flood detection probabilities. 

A possible limitation of the analysis described in this paper is the use of a full hydrological 

year as time step. In some cases, marks from the same hydrological year may correspond to 

distinct and unrelated flood events, but this information would be lost since the data used is 

the occurrence of a flood mark at any time during the year. This situation occurs quite rarely 

in the studied dataset: as described in section 4.4, marks within a year are generally related to 

a single event. For alternative datasets where this could be problematic, an easy and 

potentially sufficient strategy would be to apply the model at a seasonal, rather than annual, 

time scale. A more challenging approach would be to develop an event-based model. 

Estimated flood probabilities for ancient events could be further improved by growing the 

flood marks dataset and making a better use of its content. First, this database is part of a 

‘citizen science’ collaborative platform: anybody can register and contribute flood marks, 



with new contributions being validated by professional staff before publication. There is 

therefore scope to improve the spatial and temporal coverage of flood marks, which would be 

of particular interest for estimations in poorly-covered regions (southeast, southwest and 

northwest coastal areas). In addition, the mark elevation is also available for about 70% of 

them, but this information was completely disregarded in this paper. The added value of using 

mark elevation compared with occurrence only remains to be evaluated. It may provide 

valuable information on the ranking of flood events at each site, but it may also be overly 

sensitive to changes in the local hydraulic configuration. 

Finally, an area of promising future development is to complement the analysis performed in 

this work with large-scale climate information. Indeed, the availability of long reconstructions 

such as 20CR (Compo et al. 2011) provides an opportunity to jointly use climate and 

historical data over nearly two centuries. Climate proxies such as dendroclimatic data may 

allow extending this period even further (Steinschneider et al. 2018). This joint use of climate, 

historical and systematic flood data may shed light on the climate mechanisms driving the 

occurrence of large flood events and improve the understanding of natural flood variability. It 

may also offer the opportunity to build and calibrate a downscaling tool between large-scale 

climate and floods that may be used for various applications such as seasonal forecasting or 

future projections. 

6 Conclusion 

The availability of a national flood mark database collecting geolocalized information 

spanning several centuries constitutes an opportunity to better understand flood natural 

variability in France and to improve the characterization of the associated hazard. This work 

aimed at building a model to jointly analyze flood mark occurrences at sites and flood peaks 

measured at stations from the standard hydrometric network. This model keeps the site and 



station networks separated, and uses the idea that common Hidden Climate Indices drive both 

flood marks and peaks to transfer information between them. Following this approach, flood 

marks at sites were used to estimate flood probabilities at stations during a more-than-300-

year period starting in the early 18th century. These estimates were gathered into probability 

maps providing useful information on the extent and the spatial structure of ancient flood 

events. A sensitivity analysis suggested that these estimates are reasonably robust to 

misinterpretations of the mark recording process, thanks to the separation of the site and 

station networks. 

The same model feature - separation of site and station networks- was found to make the 

model less useful for FFA purposes. Indeed, the inclusion of old flood marks did not 

noticeably change the marginal FFA distribution compared with the same model using flood 

peaks at stations only. It is stressed that this conclusion highlights a limitation of the particular 

model used in this paper rather than an intrinsic inability of flood marks to improve FFA. In 

particular, pairing flood mark sites and hydrometric stations is likely to make flood marks 

more influential for FFA purposes, although it may also come with drawbacks such as a 

greater sensitivity to misinterpretations of the mark recording process. By contrast to the use 

of flood marks, the use of spatial models to smooth some of the GEV parameters was found to 

be an effective way to reduce parameter and quantile uncertainties. 

Systematic data from hydrometric networks are the cornerstone of flood hazard assessment, 

but their temporal coverage is limited. In order to understand the long-term natural variability 

of floods and to characterize ancient flood events, it is therefore valuable to complement 

systematic data with other sources of information, including but not limited to historical 

information. The development of flexible statistical models that can handle a wide variety of 

data types and recognize their specificities is an important step in this endeavor. 
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A1. Nearest-Neighbors Gaussian Processes 

A standard Gaussian Process (GP) is characterized by the fact that its joint pdf at a set of 𝑆 

locations is the multivariate normal distribution: 

𝑓𝐺𝑃(𝐱;𝐦, 𝐕) =
1

√(2𝜋)𝑆𝑑𝑒𝑡(𝐕)
𝑒𝑥𝑝 (−

1

2
(𝐱 −𝐦)𝑇𝐕−1(𝐱 −𝐦)) (A1) 

where 𝐱 = (𝑥1, … , 𝑥𝑆) is the vector at which the pdf is evaluated, 𝐦 is the mean vector and 𝐕 

is the covariance matrix. The computational bottleneck in equation (A1) is the inversion of the 

𝑆 × 𝑆 matrix 𝐕. 

This joint pdf can be decomposed as follows using conditional probability algebra: 

𝑝(𝑥1, … , 𝑥𝑆) = 𝑝(𝑥1)𝑝(𝑥2, … , 𝑥𝑆|𝑥1)

= 𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3, … , 𝑥𝑆|𝑥1, 𝑥2) = ⋯

= 𝑝(𝑥1)∏𝑝

𝑆

𝑖=2

(𝑥𝑖|𝑥1, … , 𝑥𝑖−1) =∏𝑝

𝑆

𝑖=1

(𝑥𝑖|𝐱𝛑𝑖)

 (A2) 

where the notation 𝛑𝑖 introduced in the last line denotes the indices 1,… , 𝑖 − 1 (and, by 

convention, 𝛑1 = ∅). In the Gaussian case, each conditional pdf 𝑝(𝑥𝑖|𝐱𝛑𝑖) is a normal 

distribution with mean �̃�𝑖 and variance �̃�𝑖 defined as: 

{
�̃�𝑖 = 𝑚𝑖 + 𝐕𝑖,𝛑𝑖𝐕𝛑𝑖,𝛑𝑖

−1 (𝐱𝛑𝑖 −𝐦𝛑𝑖
)

�̃�𝑖 = 𝑉𝑖,𝑖 − 𝐕𝑖,𝛑𝑖𝐕𝛑𝑖,𝛑𝑖
−1 𝐕𝛑𝑖,𝑖

 (A3) 

Equation (A2) allows decomposing the multivariate joint pdf (A1) into a product of univariate 

conditional pdf’s. However deriving each conditional pdf using equation (A3) still requires 

inverting the matrix 𝐕𝛑𝑖,𝛑𝑖, whose size may be as high as (𝑆 − 1) × (𝑆 − 1): the 

computational bottleneck hence still holds. The idea behind Nearest-Neighbors Gaussian 



Processes is to replace the growing list of conditioning stations 𝛑𝑖 = (1,… , 𝑖 − 1) by a 

smaller list of neighboring stations 𝛑𝑖
∗ = (𝑖1, … , 𝑖𝑘) ⊂ 𝛑𝑖 with maximum size 𝑘. The 

corresponding joint pdf is therefore defined as: 

𝑓𝑁𝑁𝐺𝑃(𝐱;𝐦, 𝐕) =∏𝑝

𝑆

𝑖=1

(𝑥𝑖|𝐱𝛑𝑖
∗) (A4) 

where each conditional distribution in the product is Gaussian with mean and variance given 

in equation (A3). Note that since all 𝛑𝑖
∗ have size at most 𝑘, evaluating the NNGP joint pdf 

only requires inverting 𝑘 × 𝑘 matrices (𝑘 = 5 was used in this paper). We refer to Datta et al. 

(2016) for a more in-depth description of the properties of NNGP’s and for thorough analyses 

demonstrating their efficiency even with small values of 𝑘. 

A2. Posterior Distributions 

Let 𝐪 = (𝑞(𝑠, 𝑡))𝑠=1…𝑆,𝑡=1…𝑇 denote the flood peaks dataset (Figure 1a) and 𝐨 similarly 

denote the 𝑅 × 𝑇 flood marks dataset (Figure 1b). Both datasets include missing values. 

For model M1, the posterior distribution is simply proportional to a GEV likelihood. If a data 

𝑞(𝑠, 𝑡) is missing, the corresponding term is simply dropped from the double product. 

𝑝(𝛍, 𝛄, 𝛏|𝐪) ∝∏∏𝑓𝐺𝐸𝑉

𝑇

𝑡=1

𝑆

𝑠=1

(𝑞(𝑠, 𝑡); 𝑒𝜇(𝑠), 𝑒𝜇(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠)) (A5) 

For model M2, additional terms appear in the equation. They correspond to the NNGP’s used 

to model the spatial variability of GEV parameters and to the priors for NNGP’s 

hyperparameters (𝛂, 𝛈0, 𝛈1). 



𝑝(𝛍, 𝛄, 𝛏, 𝛂, 𝛈0, 𝛈1|𝐪) ∝

∏∏𝑓𝐺𝐸𝑉

𝑇

𝑡=1

𝑆

𝑠=1

(𝑞(𝑠, 𝑡); 𝑒𝜇(𝑠), 𝑒𝜇(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠)) ×

𝑓𝑁𝑁𝐺𝑃(𝛍;𝐦𝜇 , 𝐕𝜇)𝑓𝑁𝑁𝐺𝑃(𝛄;𝐦𝛾, 𝐕𝛾)𝑓𝑁𝑁𝐺𝑃(𝛏;𝐦𝜉 , 𝐕𝜉) ×

𝑝(𝛂, 𝛈0, 𝛈1)

 (A6) 

In model M3, the GEV pdf is now varying with time, and additional terms are introduced for 

HCIs 𝛕𝑘 and their effects 𝛍𝑘: 

𝑝(𝛍0, 𝛍1, … , 𝛍𝐾 , 𝛕1, … , 𝛕𝐾, 𝛄, 𝛏, 𝛂, 𝛈0, 𝛈1|𝐪) ∝

∏∏𝑓𝐺𝐸𝑉

𝑇

𝑡=1

𝑆

𝑠=1

(𝑞(𝑠, 𝑡); 𝑒𝜇0(𝑠) × (1 +∑𝜇𝑘

𝐾

𝑘=1

(𝑠)𝜏𝑘(𝑡)) , 𝑒
𝜇0(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠)) ×

𝑓𝑁𝑁𝐺𝑃(𝛍0;𝐦𝜇0 , 𝐕𝜇0)∏𝑓𝑁𝑁𝐺𝑃

𝐾

𝑘=1

(𝛍𝑘;𝐦𝜇𝑘 , 𝐕𝜇𝑘)∏∏𝑓𝒩

𝑇

𝑡=1

𝐾

𝑘=1

(𝜏𝑘(𝑡); 0,1) ×

𝑓𝑁𝑁𝐺𝑃(𝛄;𝐦𝛾, 𝐕𝛾)𝑓𝑁𝑁𝐺𝑃(𝛏;𝐦𝜉 , 𝐕𝜉)𝑝(𝛂, 𝛈0, 𝛈1)

 (A7) 

Finally, model M4 also considers flood marks data 𝐨 and its posterior hence comprises 

additional terms for the data likelihood (𝑓ℬ stands for the Bernoulli probability mass function) 

and for the HCI effects 𝛌𝑘. 



𝑝(𝛍0, 𝛍1, … , 𝛍𝐾 , 𝛕1, … , 𝛕𝐾, 𝛄, 𝛏, 𝛌0, 𝛌1, … , 𝛌𝐾, 𝛂, 𝛈0, 𝛈1|𝐪, 𝐨) ∝

∏∏𝑓𝐺𝐸𝑉

𝑇

𝑡=1

𝑆

𝑠=1

(𝑞(𝑠, 𝑡); 𝑒𝜇0(𝑠) × (1 +∑𝜇𝑘

𝐾

𝑘=1

(𝑠)𝜏𝑘(𝑡)) , 𝑒
𝜇0(𝑠) × 𝑒𝛾(𝑠), 𝜉(𝑠)) ×

𝑓𝑁𝑁𝐺𝑃(𝛍0;𝐦𝜇0 , 𝐕𝜇0)∏𝑓𝑁𝑁𝐺𝑃

𝐾

𝑘=1

(𝛍𝑘;𝐦𝜇𝑘 , 𝐕𝜇𝑘)∏∏𝑓𝒩

𝑇

𝑡=1

𝐾

𝑘=1

(𝜏𝑘(𝑡); 0,1) ×

𝑓𝑁𝑁𝐺𝑃(𝛄;𝐦𝛾, 𝐕𝛾)𝑓𝑁𝑁𝐺𝑃(𝛏;𝐦𝜉 , 𝐕𝜉) ×

∏∏𝑓ℬ

𝑇

𝑡=1

𝑅

𝑟=1

(𝑜(𝑟, 𝑡); 𝑔 (𝜆0(𝑟) +∑𝜆𝑘

𝐾

𝑘=1

(𝑟)𝜏𝑘(𝑡))) ×

∏𝑓𝒩

𝑅

𝑟=1

(𝜆0(𝑟);𝑚𝜆0 , 𝑣𝜆0)∏𝑓𝑁𝑁𝐺𝑃

𝐾

𝑘=1

(𝛌𝑘;𝐦𝜆𝑘 , 𝐕𝜆𝑘) × 𝑝(𝛂, 𝛈0, 𝛈1)

 (A8) 

Note that we made a slight abuse of notation in these equations: for models M1-M3, since 

only flood peaks data are used, the study period is 1904-2015 and therefore 𝑇 = 112. For 

model M4, the study period is 1705-2015 and 𝑇 = 311. Similarly, we used the unique 

notation (𝛂, 𝛈0, 𝛈1) to denote all hyperparameters of the model, but the precise content of 

these vectors differs between models M2-M4. 
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Table 1. Prior distributions for the hyper-parameters of spatial processes. 

Spatial process 
Applies to 

equation(s) 
Constant-mean 𝛼 Sill 𝜂0 Range 𝜂1 [km] 

Log-location 𝜇 
or 𝜇0 

 
(2) and (4)  𝒩(𝑙𝑜𝑔(20), 22) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(2), 12) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(500), 12) 

Log-CV 𝛾 
 

(2) and (4) 𝒩(𝑙𝑜𝑔(0.5), 0.52) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(0.5), 12) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(500), 12) 

Shape 𝜉 
 

(2) and (4) 𝒩(0, 0.152) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(0.15), 12) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(500), 12) 

HCI effects at 
stations 𝜇𝑘 

 
(2)(4) 𝒩(0, 0.252) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(0.5), 12) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(500), 12) 

Intercept 𝜆0 
 

(5) 𝒰(−∞,∞) 𝒰(0,∞) Not applicable 

HCI effects at 
sites 𝜆𝑘 

(5) 𝒩(0, 12) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(1), 12) 𝑙𝑜𝑔𝒩(𝑙𝑜𝑔(500), 12) 

 

  



 

Figure 1. Data used in this article: (a) annual maxima at hydrometric stations, 1904-2015; (b) 

flood marks at flood sites, 1705-2015. 

 

 

Figure 2. Comparison of GEV parameters at 207 stations: estimated values (posterior mean) 

for location 𝑒𝜇, CV 𝑒𝛾 and shape 𝜉, and uncertainty (posterior standard deviation) for CV and 

shape. 

 



 

Figure 3. First three HCIs and their effects at stations and sites for model M4. In the left 

panels (HCI time series), the line is the posterior median and the dark area is the 90% 

uncertainty band. For comparison, the light area is the 90% uncertainty band for model M3, 

which only applies to the period 1904-2015. 

 

 

Figure 4. Comparison of 90% uncertainty intervals around quantile curves for the four models 

at three selected stations. 

 



 

Figure 5. Comparison of 100-year floods at 207 stations: estimated values (posterior mean), 

estimated values expressed as a deviation from model M2 used as a reference, and uncertainty 

(posterior standard deviation). 

 

 

Figure 6. Time-varying distribution of flood peaks, 1705-2015. (a) Station J3024010 located 

in northwest France. In the bottom panel, vertical lines represent 90% probability intervals 

from the predictive distribution, the horizontal line is the 10-year flood Q10 (estimated from 

the marginal distribution of Figure 4). The top panel shows the corresponding probability of 

exceeding Q10. (b) Same as (a) for station V4145210 located in southeast France. (c) 

Sharpness at all stations, as quantified by the range of estimated probabilities. The two 

stations in (a) and (b) are denoted by crossed circles. 

 



 

Figure 7. Probability maps estimated with model M4: for each selected year, the map on the 

left shows occurrences of flood marks and site status, the map on the right shows the 

probability of exceeding a 10-year flood at stations. 

 

 

Figure 8. Cross-validation by means of datasets recreating for the decade 1981-1990 the 

information that was available in 1855 (V1) and 1710 (V2). (a) First three HCIs (90% 

uncertainty intervals) for a few years bracketing the validation period 1981-1990 (dashed 

lines). (b) Probability maps for 3 selected years in 1981-1990. Small black dots denote 

stations where a 10-year flood did occur. (c) Reliability diagrams showing the empirical cdf 

of 𝐹𝑠,𝑡(𝑞𝑠,𝑡) values. A curve close to the diagonal denotes uniform values between 0 and 1 and 

therefore reliable estimates. 

 



 

Figure 9. Sensitivity analysis for model M4: 90% posterior intervals for the first HCI and its 

effects are compared between the original dataset (reference) and the three modified datasets 

(see text for details). First row: HCI time series; second row: intercept and HCI effect on 

flood mark occurrences at sites; third row: log-location intercept and HCI effect on flood 

peaks at sites. 

 



 

Supplementary Figure 1. HCIs numbered 4 to 6 and their effects at stations and sites for 

model M4. In the left panels (HCI time series), the line is the posterior median, the dark area 

is the 90% uncertainty band. For comparison, the light area is the 90% uncertainty band for 

model M3, which only applies to the period 1904-2015. 

 


