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Abstract16

Floods and heavy precipitation have disruptive impacts worldwide, but their his-17

torical variability remains only partially understood at the global scale. This article aims18

at reducing this knowledge gap by jointly analyzing seasonal maxima of streamflow and19

precipitation at more than 3,000 stations over a 100-year period.20

The analysis is based on Hidden Climate Indices (HCIs). Like standard climate in-21

dices (e.g. Nino 3.4, NAO), HCIs are used as covariates explaining the temporal vari-22

ability of data, but unlike them, HCIs are estimated from the data. In this work, a dis-23

tinction is made between common HCIs, that affect both heavy precipitation and floods,24

and specific HCIs, that exclusively affect one or the other. Overall, HCIs do not show25

noticeable autocorrelation, but some are affected by noticeable trends. In particular, strong26

and wide-ranging trends are identified in precipitation-specific HCIs, while trends affect-27

ing flood-specific HCIs are weaker and have more localized effects.28

A probabilistic model is then derived to link HCIs and large-scale atmospheric vari-29

ables (pressure, wind, temperature) and to reconstruct HCIs since 1836 using the 20CRv330

reanalysis. In turn this allows estimating the probability of occurrence of floods and heavy31

precipitation at the global scale. This 180-year reconstruction highlights flood hot-spots32

and hot-moments in the distant past, well before the establishment of perennial mon-33

itoring networks. The approach presented in this study is generic and paves the way for34

an improved characterization of historical variability by making a better use of long but35

highly irregular station datasets.36

Plain Language Summary37

Floods and heavy precipitation events still hold some mystery despite their disrup-38

tive impacts. As an illustration, the latest IPCC report (recently released in 2021) in-39

dicates that ”the frequency and intensity of heavy precipitation events have increased40

since the 1950s”, but that at the same time ”confidence about peak flow trends over past41

decades on the global scale is low”. Why this apparent disconnect between floods and42

heavy precipitation? Beyond trends, do floods and heavy precipitation vary together at43

the global scale? How are they related to atmospheric variables such as winds, temper-44

ature, atmospheric pressure?45
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This article describes a 100-year analysis of floods and heavy precipitation data at46

the global scale. This analysis is made possible by an original probabilistic model adapted47

to station datasets with highly variable data availability (https://vimeo.com/802751683).48

The analysis first highlights wide-ranging increasing trends affecting heavy precipitation,49

whereas flood trends appeared weaker and less consistent. It is then used to identify cli-50

mate configurations associated with the occurrence of floods and heavy precipitation,51

and to build a 180-year (1836-2015) reconstruction of floods and heavy precipitation prob-52

abilities at the global scale. This contributes to a better understanding of the histori-53

cal variability of hydrologic extremes in the distant past.54

1 Introduction55

Understanding the historical variability of floods and heavy precipitation in the con-56

text of a changing climate is an important endeavor (Sharma et al., 2018). At a global57

scale, this understanding is hampered by the spatial sparsity of station data and the scarcity58

of long series spanning more than 50 years. Yet some long series do exist and may be59

highly informative when analyzed with adapted methods. The first aim of this work is60

hence to provide a 100-year global analysis of the joint historical variability of floods and61

heavy precipitation, and to compare the outcome with literature results mostly based62

on shorter 50-to-60-year analysis periods. The second aim is to infer relations between63

hydrologic extremes and large-scale climate variables from this long analysis, and to use64

these relations to estimate probabilities of occurrence of extremes since 1836 at the global65

scale.66

Many studies have analyzed historical changes in floods and heavy precipitation,67

as summarized in the latest IPCC report (IPCC, 2021, chapters 8 and 11). Focusing on68

large-scale studies, there is now growing evidence that heavy precipitation has increased69

over land since the 1950’s (e.g. Westra et al., 2012; Papalexiou & Montanari, 2019; Dunn70

et al., 2020; Q. Sun et al., 2021). This overall increase is consistent with the larger water-71

holding capacity of a warmer atmosphere, but regional differences indicate that dynamic72

changes (e.g. change in storms trajectory) may play a role as well. In contrast, flood changes73

do not show such a consistent signal. Continental-scale studies generally find a mixture74

of increasing and decreasing trends, with many regions showing no discernible signal at75

all (e.g. Berghuijs et al., 2017; Hodgkins et al., 2017; Do et al., 2017; Blöschl, Hall, et76

al., 2019; Gudmundsson et al., 2019; L. Slater et al., 2021). While the discrepancy be-77
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tween the consistent signal found for precipitation and the lack thereof for floods may78

appear surprising at first sight, it can be explained by the diversity and the complexity79

of flood-generating mechanisms (Sharma et al., 2018). For instance, Tramblay et al. (2019)80

showed that antecedent moisture conditions could resolve an apparent contradiction be-81

tween increasing heavy precipitation and decreasing floods in Mediterranean France. Brun-82

ner et al. (2021) also demonstrated the existence of a catchment-specific threshold be-83

low which flood changes do not reflect precipitation changes due to the confounding ef-84

fect of land surface processes. Alternatively, one of the few robust flood signals is the85

change in flood timing for snowmelt regimes (e.g. Blöschl et al., 2017; Burn & Whitfield,86

2017; Dudley et al., 2017), which is temperature-driven rather than precipitation-driven.87

Although trends have been the focus of a majority of papers studying the histor-88

ical variability of floods and heavy precipitation, other forms of temporal variability have89

also been studied. For instance, the tendency of events to cluster into flood-rich and flood-90

poor periods has attracted attention (Hall et al., 2014; Blöschl, Bierkens, et al., 2019)91

and has been highlighted in some regions of Australia (Franks & Kuczera, 2002; Liu &92

Zhang, 2017) or Europe (Merz et al., 2016; Lun et al., 2020). Such a low frequency vari-93

ability, also referred to as persistence, may result from the influence of oceanic modes94

of climate variability such as the Pacific Decadal Oscillation (Wei et al., 2021).95

Detecting trends, persistence or any other type of temporal variability using sta-96

tion data faces several methodological challenges, as reviewed by L. J. Slater et al. (2020).97

The most typical approach used in the literature is to analyze each site separately, and98

then to look for coherent patterns using, for example, mapping or kriging of at-site re-99

sults. This is the simplest approach but the limited length of many station series may100

induce a large sampling uncertainty and hence limits the power to detect trends or the101

ability to model more complex temporal structures (Bertola et al., 2020). The analysis102

is also generally restricted to a common period for all sites in order to make at-site re-103

sults comparable, hence discarding valuable older data.104

An alternative approach is to aggregate local series at the level of predefined re-105

gions, typically using spatial averaging (e.g. Papalexiou & Montanari, 2019) or by count-106

ing events (e.g. Hodgkins et al., 2017; Najibi & Devineni, 2018). The rationale behind107

this aggregation is to reduce the variability of local series in order to increase statisti-108

cal power. However this approach still requires working with a short common period to109
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avoid inhomogeneities due to a varying number of aggregated sites. Limitations for de-110

tecting a low-frequency signal using short series hence remain. The regions also need to111

be defined carefully since opposite trends within a region may cancel out.112

A third approach is based on spatial modeling. The principle is to use the origi-113

nal at-site series within a probabilistic model that makes explicit assumptions on how114

trends or other variability components vary across stations (e.g. Renard et al., 2006, 2008;115

Aryal et al., 2009; X. Sun & Lall, 2015; Bertola et al., 2020, 2021). This reduces esti-116

mation uncertainties at the cost of making assumptions that need scrutiny. It is also more117

complex to implement than the previous approaches because it requires accounting for118

spatial dependence and missing data, and it typically leads to a high-dimensional infer-119

ence problem.120

Beyond these methodological challenges, analyzing the historical variability of floods121

and heavy precipitation also faces the difficulty of handling station datasets with highly122

irregular data availability. It is striking to observe that most contributions to the lat-123

est IPCC report use analysis periods starting around 1960 and rarely before 1950 (IPCC,124

2021, see also a few examples in Table 1). There exist a few exceptions using ∼100-year125

long periods (e.g. Mediero et al., 2015; Burn & Whitfield, 2018; Q. Sun et al., 2021) but126

with a drastically reduced number of stations. In other words, most studies restrict them-127

selves to short periods common to many sites or long periods common to a few sites, whereas128

station datasets often increase in data availability as the measurement network grows129

(see Figure 1 for an illustration). As discussed in previous paragraphs, this restriction130

often results from methodological constraints and is hence not unavoidable. For instance,131

the Hidden Climate Indices (HCI) approach proposed by Renard et al. (2021) accom-132

modates such growing datasets, and leads to estimates related to sparsely represented133

regions or periods being affected by larger uncertainties.134

Another approach to alleviate the limitations of short and irregular datasets is to135

build reconstructed series, generally by downscaling long reanalyses such as 20CR (Compo136

et al., 2011). In France for instance, daily precipitation and temperature series have been137

reconstructed since 1871 (Radanovics et al., 2013; Caillouet et al., 2016; Devers et al.,138

2020, 2021), and have been transformed into catchment-scale streamflow series by hy-139

drologic modeling (Caillouet et al., 2017; Bonnet et al., 2017; Caillouet et al., 2021). At140

a larger continental or global scale, a related approach uses the outputs of global hydro-141
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logic models (Stahl et al., 2012). However, the existence of large inconsistencies between142

observed and modeled flood trends (Do et al., 2020) casts doubt on the adequacy of global143

hydrologic models to represent extremes in small to moderately-sized catchments. The144

latter generally constitute the majority of catchments monitored in station datasets and145

may also represent major interests such as operational monitoring, flood warning, reser-146

voir management, agricultural or environmental application.147

In an attempt to overcome the limitations identified in the previous paragraphs,148

this study undertakes a global-scale analysis of the joint historical variability of floods149

and heavy precipitation, with the following main objectives:150

1. Analyze a long 100-year period, and evaluate whether the detected trend and per-151

sistence components differ from those identified in the literature.152

2. Provide a 180-year reconstruction of probabilities of occurrence at precipitation/streamflow153

stations, with a global extent.154

To achieve these objectives, this study uses a probabilistic model belonging to the155

recently-developed Hidden Climate Indices framework (Renard et al., 2021). HCIs are156

used in a similar way to standard climate indices such as Nino 3.4 or NAO (among many157

others) to explain the temporal variability of data. An important difference, however,158

is that HCIs are not predefined time series but instead are inferred from the data. They159

are conceptually similar to the principal components extracted from a space-time dataset160

using Principal Component Analysis (also known as Empirical Orthogonal Functions anal-161

ysis, e.g. Hannachi et al., 2007).162

A key strength of this HCI-based model is that it allows analyzing floods and heavy163

precipitation jointly, and distinguishing between: (i) trend and persistence components164

that affect both floods and heavy precipitation, and (ii) components that are specific to165

only one of them. The model also handles varying data availability and does not rely on166

predefined geographical regions. The joint analysis of floods and heavy precipitation over167

a long period (objective 1) constitute the first innovation, as illustrated by Table 1. The168

180-year reconstruction (objective 2) is also innovative, since no similar global-extent re-169

constructions of extreme probabilities computed at the scale of stations exist as far as170

our knowledge goes.171
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The remainder of this paper is organized as follows. Section 2 describes the pre-172

cipitation, streamflow and atmospheric datasets. Section 3 describes the models used for173

analyzing floods and heavy precipitation and for reconstructing their probabilities of oc-174

currence from atmospheric variables (pressure, wind and temperature). Results for the175

100-year analysis and the 180-year reconstruction are described in Section 4. Section 5176

compares the main findings of this analysis with literature results, and discusses limi-177

tations and avenues for future work. Finally, the concluding Section 6 summarizes the178

key insights from this work.179

2 Data180

2.1 Precipitation181

Precipitation data are taken from HadEX2 (Donat et al., 2013) and its successor182

HadEX3 (Dunn et al., 2020) datasets, which are reference global-scale datasets for de-183

tecting changes in temperature and precipitation extremes (see IPCC, 2021, Chapter 11).184

HadEX datasets exist in two versions. The ‘station’ dataset contains time series of ex-185

treme indices derived from daily station measurements, for instance the time series of186

monthly maxima of daily precipitation (Rx1day). The ‘gridded’ dataset is a spatial in-187

terpolation of these extreme indices on a regular grid. The ‘station’ dataset is used in188

this work to avoid any smoothing effect induced by spatial interpolation and any tem-189

poral inhomogeneity induced by the varying number of available stations. Statistical anal-190

yses are based on seasonal maxima of daily precipitation, with the four seasons being191

defined as DJF, MAM, JJA and SON. The time series associated with each season is an-192

alyzed separately.193

A subset of 1721 stations from HadEX datasets is used (Figure 1). The selection194

procedure is described in detail in the Supporting Information Text S1, and can be broadly195

summarized as follows:196

1. Remove stations with less than 20 years of data: a higher threshold would result197

in many stations from Africa and South-East Asia being excluded from the study.198

2. Remove stations containing suspicious outliers (see Supporting Information Text199

S1 for details).200
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Reference Var.a Extent # stations ×

period

Key findings

Papalexiou &

Montanari

(2019)

P Globalb 8730 × 1964-2013 Overall increase in frequency

Dunn et al.

(2020)

P Global griddedc ×

1950-2018

Overall increase, with regional

differences

Q. Sun et al.

(2021)

P Global 7293 × 1950-2018

or 1974 ×

1900–2018

Significant increases dominate,

with regional differences

Hodgkins et

al. (2017)

Q Europe

and

North

America

1204 × 1961-2010

or 322 ×

1931–2010

No compelling evidence for

increase in major floods

Blöschl, Hall,

et al. (2019)

Q Europe 3738 × 1960-2010 Region-dependent, with both

increases and decreases

Gudmundsson

et al. (2019)

Q Global (≈ 7000) ×

(40-year periods

in 1951-2010)

Region-dependent, with both

increases and decreases

This article P &

Q

Global 3141 × 1916-2015 See Section 6

Table 1. Properties of large-scale analyses of floods and heavy precipitation for a few selected

recent references.

a Variable: P for heavy precipitation, Q for floods.

b data are available on all continents (Antarctica excluded) but density may strongly vary.

c 1.875° × 1.25° longitude-latitude grid.
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Figure 1. Data availability: evolution of the number of precipitation (P) and streamflow

(Q) stations (top) and maps of their location (bottom). The figure shows all selected stations as

described in Sections 2.1 (P, 1721 stations) and 2.2 (Q, 1420 stations). Note however that the

number of stations effectively used in each of the four seasonal analyses will be smaller due to

the season-specific constraint described in Section 3.2.1. Zoomable versions of these maps are

available online at https://hydroapps.recover.inrae.fr/HEGS-paper.

3. Remove sets of stations sharing more than 10% of identical non-zero values: these201

are likely affected by an infilling procedure used in some countries where a single202

series is used to infill many others.203

4. Merge HadEX2 and HadEX3 by favoring the HadEX3 version whenever a station204

appears in both datasets: this allows preserving large parts of South America, Africa205

and Southeast Asia that had data in HadEX2 but not in HadEX3.206

5. Apply spatial subsampling by selecting the single longest station in a 2× 2 de-207

grees box: this reduces large inhomogeneities in the spatial density of stations and208

makes their number more computationally manageable for the same global cov-209

erage.210

2.2 Streamflow211

Streamflow data are taken from the GSIM dataset (Do et al., 2018; Gudmundsson212

et al., 2018b), which contains time series of streamflow indices (e.g. monthly mean, min213

and max) at more than 30,000 stations worldwide. GSIM includes the GRDC dataset,214

–9–



manuscript submitted to JGR: Atmospheres

which has been frequently used in large-scale hydrologic analyses (Global Runoff Data215

Centre, 2015), as well as 11 regional or national datasets. As for precipitation, statis-216

tical analyses are based on time series of seasonal (DJF, MAM, JJA, SON) maxima of217

daily streamflow, with the four seasons being treated separately.218

GSIM is probably the most complete streamflow dataset in terms of spatial cov-219

erage, but it includes highly regulated catchments that are not suited to the analysis of220

climate-driven variability. The usual approach to avoid this challenge is to use ‘Refer-221

ence Hydrologic Networks’ (RHN, Whitfield et al., 2012; Burn et al., 2012), but RHNs222

are restricted to a few countries and do not have, to date, a global extent. In order to223

favor RHN or RHN-like stations while preserving the global extent of the GSIM dataset,224

the following strategy for selecting stations is implemented:225

1. In countries where a known RHN exists, only GSIM stations belonging to the RHN226

are used. This applies to the European and North-American countries studied in227

the flood trend analysis of Hodgkins et al. (2017), plus Australia (Bureau of Me-228

teorology, 2020) and Brazil.229

2. In countries that do not have a known RHN, stations are selected using GSIM meta-230

data (series length and homogeneity, missing value rate, reliability of catchment231

delineation, population density, total dam volume and land cover type).232

3. For France and Australia, GSIM data are replaced with a more recent version of233

the RHN datasets: this allows improving space and time coverage and, in the case234

of Australia, to resolve an issue linked to the handling of quality flags (Gudmunds-235

son et al., 2018a).236

4. As for precipitation, spatial subsampling is implemented but with a 0.5 degrees237

grid box.238

This selection procedure results in the subset of 1420 stations shown in Figure 1.239

The Supporting Information Text S2 provides more details on this procedure, and in par-240

ticular on the metadata-based criteria used in point 2 to judge the ‘RHN-ness’ of sta-241

tions in countries with no formal RHN.242
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2.3 Atmospheric Variables243

In this work, atmospheric variables are used as predictors to reconstruct flood and244

heavy precipitation probabilities in the distant past. Two long reanalysis products can245

be used for this purpose: the ERA-20C (Poli et al., 2016) and the 20th Century (20CR,246

Compo et al., 2011) reanalyses. We opted for the latter in its third version (20CRv3, Slivin-247

ski et al., 2019) because it is an ensemble reanalysis, with multiple members represent-248

ing uncertainty, and it also starts earlier (1836 vs. 1900 for ERA-20C).249

Four variables are used in this study: temperature, zonal and meridional wind com-250

ponents at 850 hPa (T850, U850, V850) and mean sea level pressure (PRMSL). For each251

variable, data are averaged over the season of interest and subsampled on a 2.8125 de-252

gree grid (1/4 of the original resolution) to avoid unnecessary storage and computing time253

issues. The 80 individual members provided by 20CRv3 to represent uncertainty are used254

rather than the ensemble mean (https://portal.nersc.gov/archive/home/projects/255

incite11/www/20C Reanalysis version 3/, accessed January 2022). These variables256

were chosen because they are frequently used to study large-scale climate variability and257

derive climate indices. Likewise, seasonal averaging is frequently applied when using climate-258

informed models for floods or heavy precipitation (e.g. X. Sun et al., 2015; Lee et al., 2018).259

However, we note that alternative choices could be made on both aspects: this will be260

further discussed in Section 5.4.261

3 Methods262

The study methodology uses two probabilistic models to implement three main tasks263

as summarized in Figure 2. We start by providing a short and intuitive introduction to264

the HCI modeling framework upon which the two probabilistic models are built, refer-265

ring to Renard & Thyer (2019) and Renard et al. (2021) for an in-depth description of266

technical aspects. We then describe the three tasks implemented in this work. The first267

task analyses the precipitation+streamflow dataset in order to identify a set of HCIs that268

drive their temporal variability (Model 1). In the second task, the effects of the same269

HCIs on atmospheric variables are estimated (Model 2). Finally, the third task uses these270

two models to reconstruct flood and heavy precipitation probabilities from atmospheric271

data.272
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(a) Probabilistic models
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Hydro. effects

Atmospheric
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Task 3a

reconstruct
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Task 3b
reconstruct

flood/heavy pp.
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Figure 2. Methodological overview. (a) Two probabilistic models used in this study for

describing hydrologic extremes (floods and heavy precipitation) and atmospheric variables (pres-

sure, wind, temperature). Note that the two models share the same Hidden Climate Indices

(HCIs) as input. (b) Tasks applied to implement the 100-year analysis; (c) Tasks applied to

perform the 180-year reconstruction.

3.1 A Short Introduction to HCI modeling273

Consider a space-time dataset such as the one shown in Figure 3a, representing stan-274

dardized streamflow anomalies at S = 42 stations during T = 45 years (1970-2014,275

see Renard & Thyer, 2019). Let Y (s, t) denote the random variable generating the ob-276

servation at site s and time t. A common way to describe the temporal variability of such277

data is to use a linear regression to model the influence of a time-varying covariate τ(t)278

at each site:279

Y (s, t) = λ(s)τ(t) + ε(s, t), with ε(s, t) ∼ N (0, σ(s)) (1a)

or equivalently: Y (s, t) ∼ N (λ(s)τ(t), σ(s)) (1b)

280

A climate index such as Nino 3.4, for instance, is often used as the covariate τ(t).281

However, it is also possible to consider that the climate index is hidden by treating it282

as an unknown time series that needs to be inferred from the data. This cannot be achieved283

at a single site because the number of datapoints (T ) is smaller than the number of un-284

known quantities (T + 2). However, inference becomes feasible when all sites are con-285
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sidered together, since the number of datapoints (T×S) becomes large compared with286

the number of unknowns (T + 2S).287

The Gaussian HCI model of Equation (1) is closely related to Principal Compo-288

nent Analysis (PCA), as shown by Tipping & Bishop (1999). As an illustration, Figure 3b289

shows the estimated HCI τ̂(t) (as described in Renard et al., 2021), and compares it with290

the first component of a standard PCA applied to the same data: the two time series291

are nearly identical. PCA therefore provides a convenient analogy to interpret the out-292

comes of an HCI model: the estimated HCI time series τ̂(t) can be thought of as the prin-293

cipal component driving the temporal variability of the dataset. The associated spatial294

parameters λ̂(s) (Figure 3c, called ‘effects’ in statistical terminology) are similar to PCA295

loadings and control the strength of the HCI influence at each site: data from sites where296

λ̂(s) is large closely follow the HCI τ̂(t) (or its opposite if λ̂(s) is negative), while data297

from sites where λ̂(s) ≈ 0 follow an unrelated pattern.298

While the similarity with PCA is convenient for interpretation, we stress that HCI299

modeling has important advantages over PCA that will be exploited in this work:300

1. It is based on an explicit probabilistic model, which provides a natural framework301

to make probabilistic predictions.302

2. Probabilistic assumptions such as the regression formula or the normality assump-303

tion in Equation (1) can be modified as needed.304

3. The treatment of missing values is straightforward with likelihood and Bayesian305

estimation methods (Renard et al., 2021) and does not require infilling; this is par-306

ticularly useful for the datasets shown in Figure 1.307

4. Additional probabilistic assumptions can be made to model the time series τ(t)308

(e.g. trend, autocorrelation) and the spatial process λ(s) (e.g. spatial correlation).309

3.2 Step 1: Identifying HCIs from Precipitation and Streamflow Data310

3.2.1 Expressing Data as Nonexceedance Probabilities311

Raw series of seasonal maxima are expressed in mm (P) or m3.s−1 (Q), and in the312

case of streamflow they may vary by several orders of magnitude between sites. The usual313

approach of expressing streamflow in mm cannot be applied because catchment areas314

are unreliable for a non-negligible fraction of the dataset (see Do et al., 2018, for details315
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Figure 3. Illustration of a simple Hidden Climate Index (HCI) model and its relationship

with Principal Component Analysis (PCA). (a) Standardized streamflow anomalies during the

austral spring (SON) at 42 stations in Eastern Australia (one line per station). (b) Estimated

HCI τ̂(t) (black line) and 90% uncertainty interval (gray area). The red line is the standardized

first component of a PCA applied to the same data. (c) Effect of the HCI at each site λ̂(s).

on this issue). Some form of standardization is therefore desirable to facilitate the deriva-316

tion of a spatial model. Given the focus on extremes, we decided to consider the return317

period associated with each seasonal maxima, or equivalently but more conveniently, to318

transform seasonal maxima into nonexceedance probabilities (Figure 4). This is achieved319

at each site as follows:320

1. Extract the time series of annual maxima.321

2. Estimate a Generalized Extreme Value (GEV) distribution using the L-Moment322

method.323

3. Apply the cumulative distribution function (cdf) of this estimated GEV to sea-324

sonal maxima.325

Note that the GEV is estimated using annual maxima, but is applied to seasonal326

maxima. Consequently, nonexceedance probabilities will all be close to zero at a station327

where extremes never occur during the considered season, as illustrated in Figure 4(b).328

An additional constraint is used to avoid such situations which are not representative329

of floods or heavy precipitation: at a given station, at least one probability value should330

exceed 0.8 (i.e. at least one 5-year event should have occurred during the season). If this331

does not hold, the station is removed from the analysis for this season. This brings the332

number of stations effectively used in the analyses to 1406 (P) and 818 (Q) for SON, 947333
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(a) Latrobe River at Willow Grove (AU_226204)

0.00

0.25

0.50

0.75

1.00

1960 1980 2000
year

N
on

ex
ce

ed
an

ce
 

 p
ro

ba
bi

lit
y 

[−
]

0

5000

10000

15000

20000

S
tr

ea
m

flo
w

 [ 
m

3  . 
s−1

 ]

Annual maxima Seasonal (SON) maxima

(b) Fitzroy River at Fitzroy Crossing (AU_802055)
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Figure 4. Illustration of the transformation from raw data to nonexceedance probabilities

using two Australian streamflow stations. In case (a), the maximum daily streamflow during the

SON season (line) often coincides with the annual maximum (shaded area). This indicates that

floods often occur during the SON season at this station, leading nonexceedance probabilities to

exceed the 0.8 threshold (red line). By contrast, no floods occur during the SON season in case

(b), and as a result, all probabilities are well below the 0.8 threshold: this station will therefore

be excluded from the analysis for the SON season.

(P) and 834 (Q) for DJF, 1219 (P) and 1179 (Q) for MAM, 1406 (P) and 881 (Q) for334

JJA.335

The use of probability-transformed values does not constitute a limitation in the336

context of this work. Indeed, the physical values (in mm or m3.s−1) taken by extreme337

events at stations strongly depend on local factors (e.g. windward / leeward location for338

P, catchment size for Q), but probability-transformed values are sufficient to study the339

regional covariability of extremes and its modulation by the large-scale climate. Besides,340

nonexceedance probabilities can always be transformed back into mm (P) or m3.s−1 (Q)341

by applying the quantile function of the estimated GEV distribution.342

3.2.2 HCI Model343

The model described in this section applies to data for one given season, and will344

be used four times to separately analyze SON, DJF, MAM and JJA. Let P (s, t) and Q(s, t)345

denote precipitation and streamflow data at site s and time t, expressed as nonexceedance346

probabilities as described in the previous section. A natural distribution for such data347
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belonging to the interval (0;1) is the Beta distribution Beta (a, b), where a and b are two348

shape parameters. In this work, a reparameterized version Beta (µ, ν) is favored, where349

µ ∈ (0; 1) is the mean and ν > 0 is a concentration parameter (the larger ν, the smaller350

the variance). This reparameterized version makes the model more convenient to build351

and use since mean/concentration parameters are easier to interpret than shape param-352

eters. The formulas to move between parameterizations are the following:353


µ = a/(a+ b)

ν = a+ b

⇐⇒


a = µν

b = (1− µ)ν

(2)

Precipitation and streamflow data are then assumed to be realizations from Beta354

distributions whose parameters vary in space and time as follows:355

Distributions of P and Q:


P (s, t) ∼ Beta (µP (s, t) , νP (s, t))

Q (s, t) ∼ Beta (µQ (s, t) , νQ (s, t))

(3a)

Space-time model for µ:


logit (µP (s, t)) = ζµP

(s) +
K∑
k=1

λk,P (s)τk(t) +
K∑
k=1

θk,P (s)δk(t)

logit (µQ (s, t)) = ζµQ
(s) +

K∑
k=1

λk,Q(s)τk(t) +
K∑
k=1

θk,Q(s)ωk(t)

(3b)

Space model for ν:


log (νP (s, t)) = ζνP (s)

log (νQ (s, t)) = ζνQ(s)

(3c)

356

Equation (3) can be interpreted as a generalization of the simple HCI model of Equa-357

tion (1b), using a different distribution (Beta rather than Gaussian) and more complex358

regression formulas. Equation (3b) describes how the mean of precipitation and stream-359

flow data varies in space and time and is at the core of the model. The logit transfor-360

mation is used to ensure that the mean remains in the interval (0;1). For each variable,361

the first term (ζµP
(s) or ζµQ

(s)) is a site-specific constant (a.k.a. intercept). The sec-362

ond term models time variability by means of a set of K HCI time series τk(t). The ef-363

fect of these HCIs at each site is controlled by a set of K spatial processes (λk,P (s) or364

λk,Q(s)). Importantly, the same time series τk(t) are used for both P and Q variables:365

the second term of equation (3b) therefore represents the temporal variability common366
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to P and Q. By contrast, the third term models time variability in a similar way but uses367

distinct time series δk(t) and ωk(t) for P and Q, respectively. This third term therefore368

represents the temporal variability specific to P or Q. Finally, equation (3c) states that369

the concentration parameters vary in space but not in time, with the log transformation370

ensuring they remain positive.371

In addition, it is assumed that any spatial or temporal dependence in precipitation372

and streamflow, or any cross-dependence between them, is induced by the HCIs and their373

effects. In statistical terms, this corresponds to making an assumption of conditional in-374

dependence. We refer to Renard et al. (2021) for a thorough analysis of this assumption375

and its consequences, but one important point in the context of this work is that con-376

ditional independence makes the treatment of missing values straightforward: datasets377

presenting highly irregular availability, such as those in Figure 1, can hence easily be ac-378

commodated.379

Model specification is completed with additional assumptions on the time and space380

variability of HCIs and their effects. Starting with the latter, all spatial processes in equa-381

tion (3) are assumed to follow Nearest-Neighbor Gaussian Processes (NNGP, Datta et382

al., 2016a). Using the generic notation π = (π(s))s=1:S to denote any of the spatial pro-383

cesses in equation (3) (ζ’s, λ’s or θ’s):384


π ∼ NNGP (m,V )

mi = α, ∀i = 1 . . . S

Vi,j = η20exp (−di,j/η1) ∀i, j = 1 . . . S

(4)

Equation (4) corresponds to a constant-mean process with intersite covariance de-385

creasing exponentially as a function of intersite distance. The NNGP is essentially a stan-386

dard Gaussian Process that has been modified to make it computationally tractable with387

a large number of sites. It does so by avoiding the need to use the whole covariance ma-388

trix V (whose inversion/multiplication involves O(n3) operations), replacing it by the389

use of many smaller m×m matrices representing covariances betwen the m nearest neigh-390

bors of each site (m = 5 is used in this study). We refer to the papers by Datta et al.391

(2016a,b) and Banerjee (2017) for technical details.392
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Similar to the spatial effects, all HCI time series are assumed to follow NNGPs. Us-393

ing as previously a generic notation φ = (φ(t))t=1:T to denote any of the HCI time se-394

ries in equation (3) (τ ’s, δ’s or ω’s):395


φ ∼ NNGP (m,V )

mi = β
(
i− T

2

)
, ∀i = 1 . . . T

Vi,j = γ20exp (−|i− j|/γ1) ∀i, j = 1 . . . T

(5)

Two parameters are of particular interest in equation (5) and will be specifically396

monitored in the results: β represents a trend affecting the HCI, while γ1 controls its au-397

tocorrelation (the lag-1 autocorrelation is equal to e−1/γ1). The latter can be used to de-398

tect the existence of low-frequency variability (extreme-rich, extreme-poor periods). It399

is noted that many alternative models could be used to describe low-frequency variabil-400

ity (Henley et al., 2011), but the simple model of equation (5) is considered fit for the401

purpose of first detecting its existence.402

3.2.3 Inference403

The model described in Section 3.2.2 requires estimating the intercepts ζ, the HCIs404

τ , δ, ω and their effects λ, θ along with the parameters of their hyper-distributions α,405

η0, η1, β, γ0 and γ1. This is achieved by deriving the posterior distribution of these un-406

known parameters and exploring it with a Monte Carlo Markov Chain (MCMC) sam-407

pler. We refer to Renard & Thyer (2019) and Renard et al. (2021) for a complete tech-408

nical description. In a nutshell, the key ingredients are:409

1. Identifiability constraints that make the estimation of HCIs feasible: each HCI has410

mean zero and variance one;411

2. A stepwise approach: the model is first estimated with a single component (K =412

1 in equation (3)), yielding estimates for τ1(t), δ1(t) and ω1(t); the second com-413

ponent (K=2) is then estimated conditionally on the first-component estimates,414

etc.;415

3. A customized MCMC algorithm that avoids unnecessary computations.416

Prior distributions need to be specified for hyper-parameters. For η1 and γ1 that417

control decorrelation distance and time, exponential priors with parameters 1000 km and418
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10 years, respectively, are used to set their order of magnitude. Flat priors are used for419

all other hyper-parameters.420

MCMC sampling is performed by running 40 chains in parallel, corresponding to421

10 chains for each of the 4 seasons. Each chain is run for 30,000 iterations and the first422

third is discarded as burn-in. Computing time is case-dependent, but as a rough order423

of magnitude, 36 hours are needed to generate 30,000 MCMC samples (i.e. one chain)424

on a high-performance computing cluster. This is for one step of the stepwise approach425

described previously, and it therefore needs to be multiplied by the number of compo-426

nents considered, which is set to K = 5 in this study.427

3.3 Step 2: Estimating HCI effects on Atmospheric Variables428

Estimated HCI time series τ̂ k, δ̂k and ω̂k are available for all k = 1 . . .K after429

the completion of Step 1 (Section 3.2). As illustrated in Figure 2b, the next step is to430

estimate their effects on the atmospheric variables described in Section 2.3 (pressure, U431

and V wind and temperature). As previously, a generic notation φ̂k =
(
φ̂k(t)

)
t=1:T

432

is used to denote any of these HCI time series. Let Wv(g, t) denote the value taken by433

the vth atmospheric variable at gridpoint g and time t (belonging to the calibration pe-434

riod used to estimated the HCIs). Each variable is centered and scaled to unit standard435

deviation, i.e. standardized anomalies are considered. It is assumed that the space-time436

variability of variables W is influenced by the same HCIs as the one controlling precip-437

itation and streamflow data according to the following model:438

Wv(g, t) ∼ N (µv(g, t), σv(g))

with µv(g, t) = ψ0,v(g) +

K∑
k=1

ψk,v(g)φ̂k(t)
(6)

For a given variable v and a given gridpoint g, this equation is a standard linear439

regression model, which allows estimating the effects ψ using standard regression for-440

mulas. More precisely, let w denote observations of the atmospheric variables for the T441

calibration time steps, arranged in a matrix with T rows and G×V columns (this as-442

sumes that all V variables are observed on the same spatial grid of size G, but this can443

easily be generalized). Moreover let the estimated HCIs be arranged in a T × (K+ 1)444

matrix Υ as follows:445
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Υ =


1 φ̂1(t1) . . . φ̂K(t1)

...
...

...
...

1 φ̂1(tT ) . . . φ̂K(tT )

 (7)

Estimation of the effects ψ can then be performed using the ordinary least square446

estimator:447

ψ̂0,

Ψ̂︷ ︸︸ ︷
ψ̂1, . . . , ψ̂K︸ ︷︷ ︸
GV×(K+1)


ᵀ

= (ΥᵀΥ)
−1︸ ︷︷ ︸

(K+1)×(K+1)

× Υᵀ︸︷︷︸
(K+1)×T

× w︸︷︷︸
T×GV

(8)

Note that the formula in equation (8) applies to observed atmospheric variables448

w. However, as explained in Section 2.3, the 20CRv3 reanalysis provides 80 realizations449

of atmospheric variables w to represent the uncertainty affecting the reanalysis. This450

uncertainty can be propagated forward to the effects ψ by simply reapplying equation (8)451

to each of the 80 realizations.452

3.4 Step 3: Reconstructing Flood and Heavy Precipitation Probabil-453

ities from Atmospheric Variables454

As illustrated in Figure 2c, the objective of this third step is to use the atmospheric455

variables described in Section 2.3 to reconstruct the HCI time series which, in turn, can456

be used to estimate flood and heavy precipitation probabilities using the HCI model of457

Step 1. This is of particular interest to extend the analysis period from 1916-2015 to 1836-458

2015.459

For a particular time step t∗, the task is therefore to estimate the HCIs φ∗ using460

atmospheric data w∗. Equation (6) can once again be used for this purpose, but in an461

‘inverted’ setup: effects ψ̂ are known from equation (8) and HCIs φ∗ are sought, which462

is the opposite of step 2. Since standard deviations σ̂v(g) have also been estimated in463

the previous step, a weighted least square estimator can be used to compute the recon-464

structed φ̃
∗
:465

φ̃
∗

=
(
φ̃1(t∗), . . . , φ̃K(t∗)

)ᵀ
=
(
Ψ̂

ᵀ
Ω̂Ψ̂

)−1

︸ ︷︷ ︸
K×K

× Ψ̂
ᵀ︸︷︷︸

K×GV

× Ω̂︸︷︷︸
GV×GV

×
(
w∗ − ψ̂0

)
︸ ︷︷ ︸

GV×1

(9)
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where Ω̂ is a GV ×GV matrix containing 1/σ̂2
v(g) on its diagonal and Ψ̂ is defined in466

equation (8). The reconstructed φ̃
∗

can then be used in the HCI model of equation (3)467

to reconstruct the distribution of P and Q and any related quantities (e.g. probability468

of exceeding some threshold, task 3b in Figure 2c). As previously, this process can be469

repeatedly applied to the 80 20CRv3 members to propagate the associated uncertainty.470

4 Results471

This section follows the steps outlined in Figure 2. HCI time series and their spa-472

tial effects are first identified from P and Q data and their properties are described. The473

effects of these HCIs on atmospheric variables are then estimated, and the associated re-474

gression model is finally used to reconstruct flood and heavy precipitation distributions475

since 1836. The latter analysis also includes an assessment of the reliability and sharp-476

ness of the probabilistic reconstructions using a cross-validation exercise. Detailed re-477

sults are shown only for the SON season in the paper. Results for other seasons are avail-478

able through an online app https://hydroapps.recover.inrae.fr/HEGS-paper (see479

also Section 7) and are only summarized herein.480

4.1 Hidden Climate Indices481

4.1.1 MCMC convergence482

MCMC convergence is assessed with the Gelman-Rubin (GR) criterion (Gelman483

& Rubin, 1992) and by visualizing MCMC traces (not shown). For most inferred quan-484

tities, the GR criterion is well below 1.2 and the MCMC traces show that the chains are485

mixing well, indicating good convergence. Overall, convergence is much faster for the P -486

specific HCIs δk(t) than for Q-specific and common HCIs ωk(t) and τk(t). Further anal-487

ysis of the GR values reveals that convergence difficulties mostly pertain to HCI values488

ωk(t) and τk(t) at the beginning of the period, which can be explained by the scarcity489

of streamflow data prior to 1950 (Figure 1).490

4.1.2 HCIs and their effects in SON491

Figure 5 shows the estimated HCIs and their effects for the first component (ad-492

ditional components are illustrated in the online app). The P -specific HCI δ1 shows a493

slight decreasing trend (the 90% interval for β does not contain zero) but no strong au-494
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tocorrelation. Its effects are concentrated in central North America and are mostly neg-495

ative: high values of δ1 are hence associated with lower-than-usual heavy precipitation496

in this area. Note that the decreasing trend should be interpreted in relation to the sign497

of HCI effects: here the combination of a decreasing HCI trend and negative effects trans-498

lates into increasing heavy precipitation.499

The Q-specific HCI ω1 shows a slight increasing trend and no noticeable autocor-500

relation. Its effects reveal a dipole structure across the North-Atlantic: high values of501

ω1 are associated with higher-than-usual floods in the Eastern US, but lower-than-usual502

ones in Western Europe. Note that these effects are approximately twice as large (in ab-503

solute value) as those estimated for the P -specific HCI (compare color scales in Figure 5).504

Given the model in equation (3b) and the fact that HCIs are standardized to unit stan-505

dard deviation, this indicates that the distribution of Q may show larger temporal vari-506

ations than that of P .507

The common P +Q HCI τ1 shows no strong trend or autocorrelation. It mostly508

affects Australia, indicating that heavy precipitation and floods are affected by a com-509

mon temporal signal in this region. This shared variability suggests a close association510

between heavy precipitation and floods, indicating that typical confounding factors such511

as antecedent moisture or snowpack play a limited role during the SON season.512

Finally, Figure 5 shows that uncertainty intervals around the HCIs are fairly tight,513

indicating that HCIs can be precisely identified from the data. For Q-specific HCI ω1514

and common P+Q HCI τ1, intervals are about twice larger at the beginning of the pe-515

riod than at the end, reflecting the strongly decreasing availability of streamflow data.516

4.1.3 HCI properties for all seasons517

Figure 6 evaluates the existence of trend or autocorrelation in the HCIs for all sea-518

sons. Note that it makes sense to compare trend or autocorrelation values across sea-519

sons and HCIs because all HCIs have the same standard deviation equal to one (see iden-520

tifiability constraints in Section 3.2.3). Marked trends are found for the P -specific HCIs.521

For each of the four seasons, a large trend makes one component stand out. Figure 7 shows522

for instance the second P -specific HCI in SON and its effects: the upward trend is in-523

deed clearly visible, and moreover the HCI effects are widespread, suggesting that the524

trend affects many areas of the world. A similar observation can be made for other sea-525
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Figure 5. Hidden Climate Indices (HCIs) and their effects for the first component (SON sea-

son). Rows correspond to the HCI type (P -specific, Q-specific or common to P and Q). Panels

on the left show the HCI time series, with 90% posterior intervals shown in gray. Center and

right panels show the associated spatial effects on P and/or Q. For each row, the title gives esti-

mated values and 90% posterior intervals for the trend parameter β and the lag-1 autocorrelation

r = e−1/γ1 .
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Figure 6. Summary of HCI properties for all 5 components and 4 seasons. Boxes denote 90%

posterior intervals for the absolute trend |β| (top) and the lag-1 autocorrelation r = e−1/γ1 (bot-

tom). Outlined boxes highlight ‘large’ trends and autocorrelations, and correspond to β-intervals

not containing 0 or r-intervals above 0.1.

sons (see online app). A few trends are found for the Q-specific HCIs, but they are much526

smaller than those affecting heavy precipitation, and the associated effects are also much527

less widespread (see online app). Finally, trends are barely noticeable for the common528

P+Q HCIs. Overall, these results are consistent with the literature finding that heavy529

precipitation shows some sign of global increase over land areas, whereas floods do not530

show such a consistent signal.531

The bottom row of Figure 6 indicates that most HCIs do not show noticeable au-532

tocorrelation, suggesting that they represent modes of interannual, rather than low-frequency,533

variability. The strongest autocorrelation is detected for the third P -specific HCI dur-534

ing DJF, but closer inspection reveals a step-change behavior rather than a low-frequency535

oscillation (see online app). The second P +Q HCI in MAM also shows some moder-536

ate autocorrelation, and it mostly affects the East Coast of Australia (see online app).537
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P−specific HCI. Trend (%) = 2.56 [2.06;3.01], r = 0.02 [0.00;0.26]
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Figure 7. Same as Figure 5 for the P -specific HCI of the second component. This HCI is

characterized by a large and wide-ranging increasing trend.

4.2 HCI Effects on Atmospheric Variables538

The interest in quantifying the effect of HCIs on atmospheric variables is twofold:539

first, it can shed light on the origin of the HCIs, and hence on the variability of floods540

and heavy precipitation, in terms of large-scale circulation; second, it sets up the regres-541

sion model that will be used in Step 3 for reconstruction. Figure 8 maps the effects of542

the HCIs described in Figure 5 on the four atmospheric variables (corresponding to ψ̂k543

in equation (8)). These effects are referred to as ‘HCI atmospheric effects’ in this sec-544

tion, as opposed to the ‘HCI hydrologic effects’ that were described in Figure 5. HCI at-545

mospheric effects can be compared both in space and between variables since atmospheric546

variables have been centered and scaled.547

Hydrologic effects of P+Q HCI τ1 are essentially restricted to Australia (see Sec-548

tion 4.1.2 and Figure 5), and the associated atmospheric effects shown in Figure 8 (bot-549

tom row) reflect well-known drivers of floods and heavy precipitation in this region. More550

precisely, strong westerly winds in the equatorial Indian Ocean, negative pressure anomaly551

in the Eastern Indian Ocean and cold anomaly in the Western Indian Ocean are all typ-552

ical fingerprints of the negative phase of the Indian Ocean Dipole (IOD). Likewise, the553

cold anomaly pattern in the equatorial Pacific is typical of La Niña events. This single554

HCI can therefore be seen as the combination of the two most influential standard cli-555

mate indices in this area, namely IOD and ENSO.556

Atmospheric effects of Q-specific HCI ω1 (middle row) highlight well-structured pat-557

terns of pressure and winds. For atmospheric pressure, the key features are widespread558
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positive effects over the Pacific Ocean, and a dipole over the Eastern US and Western559

Europe, similar to the one observed for hydrologic effects (Figure 5). The latter can be560

easily interpreted: high values of ω1 are associated with positive (resp. negative) pres-561

sure anomalies over Western Europe (resp. Eastern US), and hence with less (resp. more)562

floods. For zonal wind, banded patterns crossing the North Atlantic may be associated563

with the trajectory of storms reaching Western Europe, with a similar interpretation as564

above (less westerly winds over Western Europe mean less floods). For meridional wind,565

fairly localized poles are found in the Tropical Atlantic. Since SON is the hurricane sea-566

son, these may correspond to wind patterns that favor the landfall of tropical storms and567

hurricanes in the Eastern US.568

Hydrologic effects of P -specific HCI δ1 are concentrated in the central US (Figure 5).569

The associated atmospheric effects (top row of Figure 8) are less clearly structured than570

for other HCIs and are hence more difficult to interpret. Pressure and temperature dipoles571

are found over Alaska and the western US. The negative anomaly in meridional wind lo-572

cated in the southern US may reflect the influence of moisture transport from the south573

(less southerly winds means less heavy precipitation in the central US). The atmospheric574

effects of other HCIs and other seasons are illustrated in the online app.575

4.3 Reconstruction576

4.3.1 Reconstructing Time-Varying Distributions577

Figure 9 shows the HCIs reconstructed from atmospheric variables, as described578

in Section 3.4. Overall they are in good agreement with the HCIs that were directly es-579

timated from P and Q data over the period 1916-2015 (average correlations: 0.71, 0.68580

and 0.77 for δ1, ω1 and τ1, respectively). The added value of the reconstruction is that581

it extends back to 1836, at the cost however of an increased uncertainty: the dispersion582

of the 80 members of 20CRv3 is 3 to 4 times larger at the beginning of the period than583

at the end.584

The reconstructed HCIs can then be used in the model of equation (3) to derive585

the time-varying distributions of P and Q over the period 1836-2015 and at all sites. Fig-586

ure 10 illustrates these distributions for two sites in Australia, while the corresponding587

reconstructions for all sites and all seasons are released as an open dataset (see Section 7).588

In any given year, the variance of the distribution represents the uncertainty in the re-589
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Figure 8. Effects of Hidden Climate Indices (HCIs) on atmospheric variables for the first

component (SON season). As in Figure 5, rows correspond to the HCI type (P -specific, Q-

specific or common to P and Q), columns to the atmospheric variable the effect applies to.

Effects in this figure are computed with equation (8) using atmospheric data provided by the first

member of the 20CRv3 reanalysis.
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Figure 9. Hidden Climate Indices (HCIs) reconstructed from atmospheric data (pressure,

wind, temperature) for the first component (SON season). In each panel, the red line corresponds

to the HCI estimated from floods and heavy precipitation data (as shown in Figure 5). Each thin

black line is a reconstruction based on one member of the 20CRv3 reanalysis, using equation (9).
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construction, which is affected by both the uncertainty in reconstructed HCIs as discussed590

in the previous paragraph, but also by the uncertainty in the estimation of all spatial591

terms in equation (3). For the precipitation site, the time-varying distribution has a large592

variance, resulting in a 90% probability interval that covers an important part of the (0;1)593

y-axis interval (average width: 0.74). In contrast, the streamflow time-varying distribu-594

tion is less uncertain (average width: 0.57), which allows highlighting years with well above-595

average flood probabilities: 1975 or 1992, during which major floods indeed occurred,596

but also 1910 or 1916, before the availability of any streamflow data at this site, or even597

anywhere in Australia.598

The time-varying distributions can be further appraised by evaluating reliability599

and sharpness. Reliability is based on the Probability Integral Transform (PIT) diagram600

(Laio & Tamea, 2007) which evaluates the consistency between the time-varying distri-601

butions (with cdf Ft(x)) and the observations ot through the uniformity of PIT values602

Ft(ot). A reliability index can be computed using the area between the PIT curve shown603

in Figure 10 and the diagonal (Renard et al., 2010). The sharpness index is proportional604

to the interannual variance of the distribution’s mean (Renard et al., 2021). Both indices605

are scaled between 0 (poor) and 1 (good).606

For the precipitation site, the time-varying distribution is very reliable but not very607

sharp (Figure 10): it does not strongly vary between years. In contrast, the streamflow608

time-varying distribution is slightly less reliable but much sharper. This is a consequence609

of HCI effects tending to be larger for Q-specific HCIs than for P -specific ones, as dis-610

cussed in Section 4.1.2. Reliability and sharpness indices at all sites are reported in Fig-611

ure 11. Overall reliability indices are similar for both variables. The lack of marked spa-612

tial structures suggests that the reliability of reconstructions is similar across regions.613

By contrast, sharpness varies much more both spatially and between variables. Over-614

all sharpness is markedly lower for P than for Q. Southeast Australia is the area where615

P -reconstructions are the sharpest, probably due to the strong influence of large-scale616

modes of climate variability that can be predicted from atmospheric variables. Sharp-617

ness strongly varies in space for Q-reconstructions: for instance it is much higher in Aus-618

tralia than in Japan, and this cannot be blamed on data availability since the station619

density is similar in both cases. Also note that the properties of reconstructions may also620

vary across seasons (not shown): for instance, during MAM and JJA, reconstructed dis-621

tributions of streamflow have high reliability and sharpness in large parts of the West-622

–28–



manuscript submitted to JGR: Atmospheres

F
re

q.

PIT
0

1

0 1

0.00

0.25

0.50

0.75

1.00

1850 1900 1950 2000
year

S
O

N
 m

ax
im

um
 

[n
on

−
ex

ce
ed

an
ce

 p
ro

b.
]

P − reliability: 0.93, sharpness: 0.18

F
re

q.

PIT
0

1

0 1

0.00

0.25

0.50

0.75

1.00

1850 1900 1950 2000
year

S
O

N
 m

ax
im

um
 

[n
on

−
ex

ce
ed

an
ce

 p
ro

b.
]

Q − reliability: 0.68, sharpness: 0.61

Figure 10. Time-varying distributions derived from reconstructed Hidden Climate Indices

for one precipitation (top) and one streamflow (bottom) site, both located in Northern Victoria,

Australia (SON season). The solid line denotes the median, stacked colored bands represent 50,

80 and 90% probability intervals, dots represent observed values. The title gives reliability and

sharpness indices, ranging between 0 (poor) and 1 (good). The subplot panel shows the PIT

diagram used to evaluate reliability (see Section 4.3.1 for details).

ern US, probably linked to snowmelt-induced flows. The sharpness of precipitation re-623

constructions also appears to be higher in DJF.624

4.3.2 Cross-Validation625

A cross-validation experiment is used to complement the previous assessment of626

reliability and sharpness in a predictive context. The estimation sample comprises even-627

numbered years and is used to estimate HCI atmospheric effects (regression model used628

in Section 4.2). The validation sample comprises odd-numbered years and is used to com-629

pare observed values with reconstructed time-varying distributions. Figure 12 summa-630

rizes the results for both heavy precipitation and floods, with reliability and sharpness631

indices computed on the validation sample only, or on the full dataset as in Section 4.3.1.632
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Figure 11. Reliability and sharpness indices associated with the reconstructed time-varying

distributions (as shown in Figure 10 for two sites), for all precipitation and streamflow sites (SON

season).

PIT diagrams in Figure 12a indicate a good overall reliability for both P and Q633

and confirm that reliability remains good in validation. Figure 12b breaks down this as-634

sessment at the station scale by showing the distribution of reliability indices. Reliabil-635

ity is again acceptable for both P and Q (although slightly better for the former) and636

there is no marked reliability loss with the validation sample. It is also of interest to com-637

pute the reliability index for each year rather than for each station in order to assess whether638

the reconstruction quality remains stable in time. Figure 12d suggests that this is indeed639

the case: reliability is stable and high (mostly above 0.9) after 1960 in all cases. It is more640

variable before 1960 for variable Q, but this may be attributed to sampling variability:641

streamflow data are indeed scarce before 1960 (see Figure 1), so that reliability indices642

are computed on a small number of stations for earlier years. Finally, Figure 12c shows643

the distribution of sharpness indices across stations. It confirms that Q reconstructions644

are much sharper than P ones, and it also suggests a noticeable loss of sharpness for the645

validation sample.646
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Figure 12. Assessment of the reliability and sharpness of reconstructed time-varying distribu-

tions in a cross-validation exercise (SON season). (a) PIT diagrams for all stations; (b) distribu-

tion of reliability indices computed by station; (c) distribution of sharpness indices computed by

station; (d) time series of reliability indices computed by year.

4.3.3 Reconstructing Probability Maps647

A possible way to use the time-varying distributions of Section 4.3.1 is to compute648

the probability of exceeding the T -year quantile at each site and in any given year. Us-649

ing Figure 10 as an illustration, this corresponds to the probability of exceeding the value650

1−1/T according to the time-varying distributions. These probabilities are released as651

an open dataset (see Section 7) for the four seasons and for return periods T =2, 10 and652

100 years. The corresponding maps can be browsed through in the online app. Figure 13a653

shows an example of such a map for the 10-year quantile (i.e. T = 10) in SON 1903.654

At each site, the probability can be compared to 1/T = 0.1, which is an upper bound655

for the marginal (i.e. long-term average) probability. It is only an upper bound because656

the map refers to seasonal rather than annual maxima (the marginal probability would657

be equal to 0.1 if annual maxima systematically fell in SON). For this particular year,658

the P map does not highlight strong exceedances of the value 0.1, which is a consequence659

of the low sharpness of P -reconstructions. At the opposite, the Q map suggests a ‘flood660

hotspot’ in the Northeastern US, where the probability of a 10-year flood exceeds 0.4,661

and to a lesser extent, in Northwestern US, Western Europe and Southern Australia.662
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Figure 13. Reconstructed probabilities of exceeding a 10-year event during the SON season.

(a) Example of global maps for both heavy precipitation (top) and floods (bottom) during SON

1903. (b) Regional zoom for floods during 9 selected years. Each row shows three consecutive

years, with the one in the middle column corresponding to the occurrence of a major historical

flood in SON (1877, 1896 and 1903).

Figure 14 provides a synthetic view of these probability maps in SON for the whole663

period 1836-2015 by sorting the stations according to the AR6 region they belong to (Itur-664

bide et al., 2020). For heavy precipitation, the most prominent feature is the clustering665

of higher-than-usual occurrence probabilities after ∼1950 in most regions. This indicates666

that atmospheric conditions have been more favorable to the occurrence of heavy pre-667

cipitation events in the recent decades, in line with the widespread increase detected in668

station data (Section 4.1.3). Similar high-probability clusters can also be found during669

the 19th century in a few regions such as Eastern and Western North America (ENA and670

WNA). The figure for floods is quite distinct from the precipitation one: it does not high-671

light any widespread trend but rather region-specific patterns. In particular, high-probability672

clusters are visible during the mid-19th century in Western and Central Europe (WCE),673

in the Mediterranean (MED) and in some regions of Asia (EAS and SAS). Conversely674

atmospheric conditions have been less favorable to the occurrence of floods during the675

most recent decades in these regions. The opposite pattern is observed in Northern Eu-676

rope (NEU) and in North America (WNA and ENA), with high-probability clusters ap-677

pearing in recent decades.678

It is also of interest to inspect in more detail specific areas, in particular those show-679

ing good reliability and sharpness (Figure 11). Here we focus on a region of the North-680
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Figure 14. Synthetic illustration of the 180-year reconstruction for the SON season. (a) AR6

regions as defined by Iturbide et al. (2020). (b) Reconstructed probabilities of exceeding a 10-

year precipitation during the SON season, for all years (columns) and stations (rows, sorted by

AR6 region then by latitude within each region). Colors and acronyms in the right stripe cor-

respond to the AR6 regions shown in panel (a). (c) Same as (b) for probabilities of exceeding a

10-year flood.
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eastern US delimited by the Appalachian Mountains to the west, North Carolina to the681

south and the State of New York to the north (Figure 13b). This region was selected due682

to the availability of an inventory of historical floods provided by the NOAA-NWS Mid-683

dle Atlantic River Forecast Center (https://www.weather.gov/marfc/Flood Frequency).684

According to this inventory, major flooding occurred during the SON season in 1877, 1896685

and 1903. Figure 13b shows the associated flood probabilities reconstructed from atmo-686

spheric variables (and hence not directly using streamflow information since the P and687

Q datasets started in 1916). These three particular years are indeed characterized by prob-688

abilities above 0.1 (middle column), and up to 4 times above it in 1903. By contrast, the689

non-flood years before and after 1896 and 1903 show probabilities close to 0. The case690

of 1877 is different since the previous year also shows high probabilities, but the inven-691

tory does not mention any flood in 1876.692

5 Discussion693

5.1 How do Results from the 100-year Analysis Compare with Liter-694

ature?695

The joint modeling of floods and heavy precipitation and the use of a 100-period696

make this study stand out from other large-scale analyses in the literature, as illustrated697

in Table 1. It is therefore of interest to assess whether these specific features yield in-698

sights that differ from those of the literature.699

Overall, the results in terms of trends (or lack thereof) are remarkably consistent700

with the literature. The wide-ranging trends found in P-specific HCIs are in agreement701

with IPCC’s statement that heavy precipitation has increased since the mid-20th cen-702

tury (IPCC, 2021, chapter 11): the statement hence also holds since the early 20th cen-703

tury, and it still holds for each of the four seasons (Figure 6). In contrast to heavy pre-704

cipitation, trends affecting Q-specific HCIs are smaller and have much more localized ef-705

fects. This is also in line with the lack of globally-consistent flood trend reported in the706

literature, suggesting that this negative result is not due to the relative short period used707

in most flood analyses (Table 1). Finally, trends affecting common P+Q HCIs are barely708

noticeable, confirming that floods and heavy precipitation should not be expected to change709

in the same way (Sharma et al., 2018), unlike annual streamflow and precipitation (Mc-710

Cabe & Wolock, 2011).711
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It is also of interest to make this comparison at a smaller regional scale, for instance712

using the AR6 regions shown in Figure 14(a) and used in the recent analyses of Q. Sun713

et al. (2021, heavy precipitation) and Gudmundsson et al. (2019, floods). To achieve this,714

the time-varying mean of the Beta distribution (µ(s, t) in Equation (3)) is computed for715

each individual station over the whole period 1916-2015. The resulting time series are716

grouped by AR6 region and the common regional trend is computed for each region. The717

corresponding figures are shown in the Supporting Information (Figures S1 to S8). For718

heavy precipitation (Figures S1 to S4), the trends are remarkably consistent with the719

results described by Q. Sun et al. (2021, in particular their Table 1). These authors re-720

ported mostly increasing trends in annual maxima of daily precipitation in several re-721

gions of North America (CNA, ENA, NCA), Europe (NEU, EEU) and Asia (WSB, RFE).722

For all these regions, increasing trends are also discernible over the period 1916-2015 and723

for most seasons (Figures S1 to S4). Conversely, regions where trends were reported as724

less consistent (SAU, RAR, NWN) also show no clear increasing trend in our results. The725

only notable discrepancy is the MED region, for which Q. Sun et al. (2021) reported rather726

inconsistent trends while our results show a discernible increasing trend, especially in SON727

which is the most extreme-prone season (Figure S1). For floods, the comparison with728

the results of Gudmundsson et al. (2019, in particular their Figure 3) is not as conclu-729

sive. One of the strongest result reported by these authors was a decrease in streamflow730

of the MED region, including for annual maxima, but our results highlight no clear trend731

in the main flood seasons (DJF and SON, Figures S6 and S5). On the other hand, the732

clear decreasing trend reported by Gudmundsson et al. (2019) for SAU since the 1970’s733

is also visible for 3 seasons in our results (Figures S5 to S7), but not in JJA which is the734

most extreme-prone season in this region (Figures S8). Several reasons may explain this735

mostly inconclusive comparison for floods. First, the 100-year time period used here dif-736

fers from those used in the literature (see Table 1), and many authors reported that flood737

trends are highly sensitive to the selected period (see e.g. Hodgkins et al., 2017; Gud-738

mundsson et al., 2019). Moreover, we performed four separate seasonal analyses, while739

other comparable global-scale trend analyses worked at the annual scale, thus compli-740

cating direct comparisons. Finally, flood trends are overall quite weak and spatially in-741

consistent, making them more sensitive to data or methodological differences between742

studies.743
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Results in terms of low-frequency variability are only partly consistent with the lit-744

erature. Indeed, several studies have highlighted significant clustering of flood events in745

time in some regions of Australia (e.g. Franks & Kuczera, 2002) or Europe (e.g. Lun et746

al., 2020), which should result in the presence of autocorrelation in HCIs. Some confirm-747

ing evidence is found in the case of Australia: the second P+Q HCI during the MAM748

season has a noticeable autocorrelation (Figure 6, bottom right panel), and it mostly af-749

fects Eastern Australia. However, no noticeable autocorrelation is detected for other HCIs750

affecting Europe. This failure to detect flood clustering might be partly due to the lack751

of power of the HCI model used in this study to detect such variability. We stress, how-752

ever, that the long 100-year analysis period used in this paper is beneficial in terms of753

detection power. Moreover, the HCI framework is not inherently unable to detect low-754

frequency variability, as demonstrated by Renard & Thyer (2019) using a synthetic ex-755

periment. Finally, we applied the HCI model used in this study to Sea Surface Temper-756

ature data (SST, not shown), and the model identified components with a very clear low-757

frequency signal. Our interpretation is therefore that low frequency variability may ex-758

ist but it only accounts for a small part of the temporal variability of floods and heavy759

precipitation, at least when they are considered at the global scale over the last 100 years.760

5.2 Originality of the 180-year Reconstruction761

A key contribution of this work is the global reconstruction of flood and heavy pre-762

cipitation probabilities since 1836. This reconstruction allows highlighting periods dur-763

ing which atmospheric pressure, wind and temperature conditions were favorable to the764

occurrence of extremes in specific regions. The widespread increase in heavy precipita-765

tion probabilities is in line with their expected behavior under a warming climate and766

with the increasing trends revealed by the 100-year analysis. Regarding floods, the high-767

probability period affecting Western, Central and Southern Europe during the mid-19th768

century is worth a particular note since it predates the availability of station data and769

is hence purely identified from atmospheric information. Interestingly, this period is con-770

sistent with one of the flood-rich period identified by Blöschl et al. (2020) using histor-771

ical information. The release of the reconstruction as an open dataset makes it open to772

further appraisal by means of local historical data or other sources of information.773

In addition to its length, the uniqueness of the reconstruction lies in the fact that774

it reaches a global extent while operating on station data (i.e. streamflow measured at775

–36–



manuscript submitted to JGR: Atmospheres

hydrometric stations and precipitation measured at raingauges). As far as we know, sim-776

ilar long and station-based reconstructions have been limited to a national extent so far777

(e.g. Caillouet et al., 2017; Devers et al., 2020, 2021, in France). Alternatively, global-778

extent hydrologic reconstructions are generally shorter and operate on relatively large779

gridcells, which makes them relevant for large catchments only. As an illustration, the780

reconstruction of Alfieri et al. (2020) (1980-2018) was calibrated on catchments larger781

than 5,000 km2, which only represents around 10% of the catchments we used in this782

work. The 180-year reconstruction therefore fills a gap in the landscape of hydrologic re-783

constructions. A drawback of this uniqueness is that a detailed quantitative compari-784

son with existing products is difficult.785

From a methodological standpoint, this reconstruction also constitutes a proof of786

concept for a ‘bottom-up’ approach that starts from hydrologic data observed on oper-787

ational station networks and attempts to uncover sources of predictability from the larger-788

scale climate (Figure 2). This approach is generic and could be applied to other surface789

variables and other spatial or temporal scales. The ‘bottom-up’ approach is to be com-790

pared with the more standard ‘top-down’ method that transforms climate inputs into791

streamflow by means of hydrologic modeling (see Prudhomme et al., 2010, for a simi-792

lar discussion in the context of future projections).793

5.3 Improving Reconstructions using Historical Information794

In this study historical information is used to identify the dates of remarkable flood795

events that could be compared against reconstructed flood probabilities. While this is796

the most straightforward use of this information, it does not fully take advantage of its797

richness to better understand flood risk (Brázdil et al., 2006). In particular, historical798

information goes back in time much further than reanalyses. As a few examples, the flood799

inventory used in Section 4.3.3 goes back to 1687; historical floods of large European rivers800

such as the Rhône (Pichard et al., 2017) or the Rhine (Wetter et al., 2011) have been801

documented since around 1300; the European historical dataset collated by Blöschl et802

al. (2020) goes back 500 years; paleofloods even allow considering millennial time scales803

(Wilhelm et al., 2022). In addition, regional historical datasets provide information on804

the spatial structure and extent of large-scale flood events. Finally, historical data may805

include information on flood intensity, albeit a possibly qualitative one.806
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A promising research avenue would therefore be to derive reconstructions of flood807

and heavy precipitation probabilities based on the joint use of three sources of informa-808

tion: station measurements, long atmospheric reanalyses and paleo-historical data. In809

addition to the availability of large-scale, well-documented and homogeneous datasets,810

a necessary ingredient to achieve this is a flexible probabilistic model that can be prop-811

erly adapted to the specificity of such a mixed dataset. This includes the joint use of dif-812

ferent types of data (qualitative, quantitative both discrete and continuous), the han-813

dling of missing and censored values, the ability to account for the complex space-and-814

time-varying availability of historical sources, etc. The HCI framework used in this study815

has been built with such a flexibility as a core objective, and could hence be adapted to816

perform this analysis. This has the potential to improve both the quality and the tem-817

poral extent of long-term reconstructions of floods and heavy precipitation.818

5.4 Further Improving Historical Reconstructions819

Several promising directions exist to improve the sharpness of probabilistic recon-820

structions, globally for heavy precipitation and at least in some regions for floods. A first821

direction would be to consider alternative predictor variables. For instance, atmospheric822

variables such as vertical temperature gradient or vertical wind shear may be important823

for extreme-generating phenomena such as hurricanes and medicanes (Cavicchia et al.,824

2014). Alternatively, surface variables describing antecedent moisture and snowmelt may825

also be of interest for floods (Blöschl, Hall, et al., 2019).826

A second direction would be to avoid the seasonal averaging of atmospheric pre-827

dictors. Indeed, this averaging is likely to ‘smooth out’ features that are important for828

floods in small catchments and for local precipitation. The use of seasonal quantiles rather829

than averages may be considered. An alternative solution would be to preserve the daily830

resolution of atmospheric fields and to look for specific dynamic patterns that are asso-831

ciated with floods and heavy precipitation, using for instance a lag-embedding approach832

(Giannakis & Majda, 2012).833

Finally, a third direction to improve historical reconstructions would be to lever-834

age recent progress in Machine Learning (ML), in particular in neural network approaches835

tailored to large spatiotemporal datasets (e.g. Nielsen et al., 2022). We note that the meth-836

ods used in this work already share many similarities with ML approaches. For exam-837
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ple, the HCI model can be viewed as an extension of probabilistic principal component838

analysis (Renard et al., 2021). The prediction method described in Section 3.4 is known839

in ML as the inverse regression approach (see Devijver & Perthame, 2020, and reference840

therein for details). The idea of using HCI time series as intermediate variables when841

both predictor and predictand variables are highly dimensional (thousands of gridpoints/sites)842

is similar to the encoder-decoder approach used in ML (Murphy, 2012).843

All these avenues for improvement notwithstanding, we note that there may also844

be intrinsic predictability limits related to the nature of floods and heavy precipitation:845

their high variability in both space and time make them much more difficult to predict846

from large-scale climate than e.g. seasonally-averaged precipitation/streamflow or smoother847

variables such as temperatures. As an illustration, applying the exact same framework848

as in this study to SST predictand yielded much sharper reconstructions than those ob-849

tained with floods and heavy precipitation (not shown).850

5.5 The Importance of Global Station-Based Datasets851

The use of large global-scale datasets does not allow performing a thorough anal-852

ysis of data quality at every site. However, the quality checks and screening procedures853

implemented by data owners, dataset providers and ourselves provide confidence that854

data errors, while certainly not absent, are isolated. A more challenging issue is the ad-855

equacy of the selected streamflow stations to monitor climate-driven variability. Indeed,856

HCIs may compensate for omitted time-varying factors affecting the data, including an-857

thropogenic influences (e.g. a catchment moving from natural to regulated). The main858

safeguard against this issue is our attempt at selecting ‘RHN-like’ stations in countries859

with no known RHN (Section 2.2). This procedure is far from infallible, so that regu-860

lated catchments likely made it into the analyzed dataset. However, we are confident that861

they did not strongly affect the results for two reasons. First, the majority of stations862

used in this study (66%) do come from a formal RHN. The second reason is methodolog-863

ical: the spatial model used for HCI effects (Equation (4)) favors the identification of HCIs864

having a smooth and consistent effect at the regional scale. Isolated stations affected by865

non-climatic changes are hence unlikely to be picked up by the first few HCIs, unless these866

changes have a wide-ranging spatial effect (e.g. a change in the measurement process af-867

fecting a whole country).868

–39–



manuscript submitted to JGR: Atmospheres

The challenges discussed above apply to any study trying to identify climate-driven869

trends or variability in hydrologic regimes. Consequently, initiatives aimed at collating870

global station-based datasets and documenting their properties are of prime importance.871

As an illustration, the recent ROBIN initiative (https://www.ceh.ac.uk/our-science/872

projects/robin) is an important step toward collating existing RHNs at the global scale.873

More generally, a perennial approach to collating and managing multi-national stream-874

flow datasets - RHN or not - is needed to avoid recurring difficulties such as homogeniz-875

ing quality flags, documenting infilling procedures, detecting duplicates, performing reg-876

ular updates etc. We therefore second the call by Gudmundsson et al. (2018b) for ‘the877

hydrological community [...] to collectively improve the organization of initiatives for co-878

ordinated systems that facilitate updating, storage and documentation of existing data,879

and to lobby for existing closed databases to be made open and accessible’.880

6 Conclusion881

Understanding how floods and heavy precipitation may evolve in a changing cli-882

mate requires characterizing their historical space-time variability as well as their co-variability.883

The overarching aim of this study was to contribute to this characterization by means884

of two long and global-scale analyses. The first analysis jointly explores floods and heavy885

precipitation station data over a 100-year period. The second analysis provides a 180-886

year reconstruction of flood and heavy precipitation probabilities derived from atmospheric887

information.888

The 100-year analysis highlights wide-ranging increasing trends affecting heavy pre-889

cipitation, whereas flood trends are weaker, may be upward or downward and affect smaller890

regions. These results mostly confirm literature findings (e.g. Sharma et al., 2018; IPCC,891

2021) and put them on firmer ground by extending the analysis period (100-year vs. the892

typical 50-to-60-year used in the literature) and jointly analyzing floods and heavy pre-893

cipitation. Despite its length, the analysis does not detect strong persistence components894

affecting the data, suggesting that low-frequency variability accounts for a small frac-895

tion of the temporal variability of floods and heavy precipitation.896

The second analysis provides a 180-year, global-scale reconstruction of flood and897

heavy precipitation probabilities, based on atmospheric pressure, wind and temperature898

variables taken from the 20CRv3 reanalysis. This reconstruction was found to be reli-899
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able for both floods and heavy precipitation, but sharpness is much higher for the for-900

mer than for the latter. In general, higher-than-usual precipitation probabilities were found901

to cluster in the latest decades, reflecting atmospheric conditions favorable to the occur-902

rence of heavy precipitation events, as expected under a warming climate (IPCC, 2021).903

Flood probabilities patterns did not follow such a general behavior and were found to904

be much more region- and season-specific. The reconstruction allowed identifying regions905

with abnormally high flood probabilities in the distant past, for years well before the es-906

tablishment of perennial station networks. The reconstruction is released as an open dataset,907

which may enable more in-depth analyses at smaller spatial scales, using local histor-908

ical datasets or other sources of information.909

From a methodological standpoint, the HCI approach used in this study has sev-910

eral decisive advantages for analyzing station-based datasets. It naturally accommodates911

varying data availability: this avoids restricting the analysis to either a short period com-912

mon to many stations or a long period for a few stations. The approach also allows an-913

alyzing the covariability of several variables measured on distinct networks by assum-914

ing that they are under the influence of common HCIs. Finally, it simplifies the deriva-915

tion of relationships between highly dimensional predictor and predictand variables by916

using the HCI time series as low-dimensional intermediate variables. The HCI approach917

is very general and could hence be applied to study the historical variability of other phe-918

nomena at a large spatial scale. This includes other aspects of the hydrologic regime such919

as water resources and droughts, but also other variables characterizing the state of ecosys-920

tems in the context of a changing climate.921

Station datasets originating from long-term monitoring networks constitute a most922

valuable asset to understand the historical variability of hydro-climatic variables. The923

statistical models used to analyze these datasets should be flexible enough to adapt to924

their peculiarities and make the best possible use of available data. This may improve925

not only the characterization of natural variability, but also the ability to derive predic-926

tive methods for past reconstructions or future projections.927
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